
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Master's Theses Theses and Dissertations

2022

Randomness Distillation to Improve Key Quality for Context-Based Randomness Distillation to Improve Key Quality for Context-Based

Authentication Schemes Authentication Schemes

Jackson West

Follow this and additional works at: https://ecommons.luc.edu/luc_theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
West, Jackson, "Randomness Distillation to Improve Key Quality for Context-Based Authentication
Schemes" (2022). Master's Theses. 4430.
https://ecommons.luc.edu/luc_theses/4430

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It
has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more
information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2022 Jackson West

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_theses
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_theses?utm_source=ecommons.luc.edu%2Fluc_theses%2F4430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=ecommons.luc.edu%2Fluc_theses%2F4430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_theses/4430?utm_source=ecommons.luc.edu%2Fluc_theses%2F4430&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/

LOYOLA UNIVERSITY CHICAGO

RANDOMNESS DISTILLATION TO IMPROVE KEY QUALITY FOR CONTEXT-BASED

AUTHENTICATION SCHEMES

A THESIS SUBMITTED TO

THE FACULTY OF THE GRADUATE SCHOOL

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

PROGRAM IN COMPUTER SCIENCE

BY

JACK WEST

CHICAGO, IL

MAY 2022

Copyright by Jack West, 2022
All rights reserved.

ACKNOWLEDGEMENTS

Thank you to Dr. Klingensmith for allowing me to explore the topic of entropy harvesting.

Thank you to Dr. Thiruvathukal for taking me under his wing when I was a undergraduate

student. Thank you to Dr. Harrington for giving me my first opportunity within the Loyola

computer science department. Thank you to Geoff Woodcock who gave me my first job and

introduced me to several important software engineering topics. Thank you to my parents who

have been supportive and encouraging through my entire academic journey. Thank you to Loyola

University Chicago for allowing me to study the topic I am presenting today.

iii

Those who can imagine anything, can create the impossible.

– Alan Turing

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF ABBREVIATIONS ix

ABSTRACT x

CHAPTER ONE: INTRODUCTION 1

CHAPTER TWO: BACKGROUND 7
An Overview of the Standard Context Based Authentication Process 8
NIST Test for Randomness 9
A Review of the Typical Set and the Asymptotic Equipartition Property 10
Entropy Rate of a Noisy Bandlimited Signal 11
Computing the Entropy Rate from the PSD 13
Rényi Entropy 15
Deterministic Signal Cases 16
Calculating Entropy Rate without Directly Computing Determinants 19
Measuring Shared Randomness 22
Related Work 23

CHAPTER THREE: RANDOMNESS DISTILLATION 26
Von Neumann Corrector 26
Our Implementation of MOONSHINE 28
Real Environmental Signals 29
Choosing Parameters k and m 30

CHAPTER FOUR: EVALUATION OF MOONSHINE 32
Datasets 32
Subsequence Length 34
Run Time 34
Key Quality 35
Discard Length 38
Data Retention 38

CHAPTER FIVE: DISCUSSION 40

CHAPTER SIX: CONCLUSION 42

APPENDIX A: PRELIMINARY PROOFS 44

v

BIBLIOGRAPHY 47

VITA 51

vi

LIST OF TABLES

Table 1. NIST test results for various context-based authentication schemes 25

vii

LIST OF FIGURES

Figure 1. Data pipeline for VOLTKEY. 3

Figure 2. A sorted histogram of variable-length bit sequences. 11

Figure 3. Evaluation of MOONSHINE on VOLTKEY. 35

Figure 4. Comparisons of bit sequences as a histogram. 37

Figure 5. NIST test pass rate as a color map with varrying parameters. 37

Figure 6. Data retention of MOONSHINE. 38

viii

LIST OF ABBREVIATIONS

NIST National Institute of Standards and Technology

IoT Internet of Things

RSA Rivest, Shamir, and Adelman

DSA Digital Signal Algorithm

PRNG Pseudorandom Number Generators

PSD Power Spectral Density

AWGN Additive White Gaussian Noise

ACF Autocorrelation Function

ADC Analog to Digital Converter

WSS Wide-Sense Stationary

DFT Discrete Fourier Transform

DC Direct Current

ECG Electric Cardio Graph

ix

ABSTRACT

Context-based authentication is a method for transparently validating another device’s

legitimacy to join a network based on location. Devices can pair with one another by

continuously harvesting environmental noise to generate a random key with no user involvement.

However, there are gaps in our understanding of the theoretical limitations of environmental noise

harvesting, making it difficult for researchers to build efficient algorithms for sampling

environmental noise and distilling keys from that noise. This work explores the

information-theoretic capacity of context-based authentication mechanisms to generate random

bit strings from environmental noise sources with known properties. Using only mild

assumptions about the source process’s characteristics, we demonstrate that commonly-used bit

extraction algorithms extract only about 10% of the available randomness from a source noise

process. We present an efficient algorithm to improve the quality of keys generated by

context-based methods and evaluate it on real key extraction hardware. MOONSHINE is a

randomness distiller which is more efficient at extracting bits from an environmental entropy

source than existing methods. Our techniques nearly double the quality of keys as measured by

the NIST test suite, producing keys that can be used in real-world authentication scenarios.

x

CHAPTER ONE

INTRODUCTION

Context-based authentication is emerging as a solution to enable fast and convenient

device authentication. It verifies two devices’ coexistence by comparing an independently

generated random key or pin from an ambient source of randomness, such as wireless signal

strength, acoustic noise, electrical noise, etc.

A pair of devices performing context-based authentication begin by individually

harvesting noise from a shared source of randomness (Fig. 1). Each device samples the

environmental signal with an analog-to-digital converter and divides its sequence of samples into

blocks. Each block of the samples is then converted into a single bit by way of a bit extraction

technique. If the random source has a significant fraction of common-mode noise shared between

the two authenticating devices, then the bit sequences they extract are substantially similar. The

underlying assumption of context-based authentication is that only devices which are physically

near one another share enough common-mode noise to authenticate. Distant devices, which are

assumed not to be legitimate authenticators, generate significantly different bit sequences from

the contextual information that they can observe, so they cannot authenticate with a legitimate

device.

The environment around us is full of noise sources, but all noise sources ultimately have

the same problem: we need some filter or transformation to translate samples of the noise source

1

2

into the keyspace elements. The question we are trying to answer here is how do we efficiently

build transformation functions that can produce high-quality keys.

As we will demonstrate, most environmental noise sources generate signals with a low

randomness density. Informally, we say that if we harvest a k-bit key from an environmental

source, that key could be represented with a shorter sequence of k − n bits. More formally, we

say that the Shannon entropy rate of a k-bit key generated from an environmental noise source is

He(X) < HU(X), where HU(X) = k is the entropy rate of an iid sequence of k

uniformly-distributed Bernoulli random variables.

One possible solution to this problem would be to use the bit sequence extracted from the

environmental noise source as a seed for a pseudorandom number generator (PRNG), which

would produce keys that are indistinguishable from random. Since PRNGs are deterministic, all

devices that start with the same seed would produce the same key. Although, if we assume that an

illegitimate user who wishes to gain access to a network that is secured by context-based

authentication knows how the PRNG converts seeds to keys—an assumption we must

make—then the keys produced by the PRNG can be of no higher quality than the seeds used to

generate them. Using cryptographic hash functions to randomize a low-entropy bit sequence

results in a similar problem.

In this work, we answer two open questions regarding the information theoretic properties

of context-based key generation. First, we ask what is the maximum amount of randomness we

can extract (in bits per second) from some environmental source process given only its power

spectral density? Second, we ask how can we increase the randomness density in keys generated

by context-based methods? In the existing literature, no technique can repeatedly generate shared

3
Analog Noise on

Power Line
Digitalized Samples
of Power Line Noise

Key ReconciliationBit Extraction

1 10110

Hand off Key
to Device

Figure 1. Data pipeline for the context-based scheme VOLTKEY. MOONSHINE is applied during
the bit extraction phase.

keys from environmental noise that can pass standard tests for randomness—Table 1 shows a

summary of NIST results for many recent pieces of work that report their results. Without

generating sufficiently random keys, we cannot be sure that we are excluding unauthorized users.

To address the first problem, we develop a method for estimating the entropy rate—which

is an upper bound on the bit extraction rate—of the raw environmental noise signal. The bit

extraction rate matters because the most secure keys are long. RSA and DSA keys are between

2,048–4,096 bits in length, and the minimum length is getting longer all the time due to

improvements in computational capacity available for brute force attacks. For context-based

authentication techniques to be practical, they must be faster than manual techniques like typing

in a password. But current context-based authentication schemes are slow for two reasons. First,

the entropy rate of the environmental noise process—measured in bits per second—limits the

speed. Second, the efficiency of standard key generation algorithms that extract bits from the

chosen environmental noise processes tends to be low. Standard algorithms can extract one key

bit every 10–20 samples of the noise process.

To address the second problem, we introduce a new randomness distiller called

MOONSHINE[35]. MOONSHINE distills randomness from a long bit sequence with low-entropy

density into a shorter bit sequence with high entropy density that can be used as a secure

4

cryptographic key. MOONSHINE produces keys with near-optimal entropy rate by selectively

discarding subsequences from the input. By contrast, other randomness correctors have

suboptimal performance [8].

The technical challenges of implementing a randomness distiller stem from the fact that

random numbers’ predictability is difficult to measure. There are many senses in which a bit

sequence may be predictable: its periodicity, propensity to generate a particular bit sequence

(even if that sequence’s appearance is not periodic), etc. Furthermore, once we know that a bit

sequence is predictable, it is not easy to selectively eliminate its predictable elements. Our

theoretical analysis of environmental entropy sources suggests techniques to deal with these

challenges and motivates our design of MOONSHINE.

This work introduces a novel randomness distiller in the data pipeline shown in Fig. 1

between bit extraction and key reconciliation which selectively removes bits generated by the bit

extractor to improve the quality of the final key that is generated. Our randomness distiller

introduces the new technique of discarding blocks of bits from the input sequence in a periodic

fashion. This has the effect of disrupting the periodic repetitions on the input sequence, with the

result being more random sequences that do well on the NIST benchmarks. We demonstrate that

this bit discarding technique significantly improves the overall quality of keys while adding only

a negligible processing overhead.

We demonstrate the effectiveness of MOONSHINE by evaluating it on real context-based

authentication hardware. The authors of VOLTKEY lent us prototypes that we used to evaluate

MOONSHINE. The MOONSHINE corrector improves the randomness of bit sequences generated

by VOLTKEY and considerably outperforms the Von Neumann randomness corrector, both in

5

terms of the randomness of the resulting key and the amount of data retained after correction.

Keys generated by MOONSHINE can pass 14/15 NIST tests for randomness, making them

suitable for use as cryptographic and authentication keys. It is important to know the source

process’s entropy rate because that imposes a hard upper limit on the speed of key extraction. We

might choose to work with one noise process or another, depending on the entropy rate.

Generally speaking, when we are designing a context-based authentication scheme, we

know the general properties of the source process’s power spectral density. For example,

body-area networks that harvest electrical signals from the heart (H2H [25] and H2B [19]) to

generate authentication keys generally start with an analog source process that has a bandwidth of

a few Hertz. We can assume that its power spectral density will have a few strong harmonics in

the 1–10 Hz frequency band superimposed on additive white Gaussian noise. VOLTKEY, which

harvests randomness from the electric power lines, will likely have strong harmonics at multiples

of 60 Hz, tapering off at a few hundred Hertz. Starting with this information, we show how to

estimate the entropy rate of a typical realization of the source process and improve the quality of

extracted keys.

The contributions of this work are as follows:

1. We present a new method for calculating the entropy rate of a random process from its

samples or its PSD that works for any wide-sense stationary random process (§.3 & §0.7.7).

2. Using intermediate results from the previous technique, we introduce MOONSHINE, an

entropy distiller that can achieve a substantially improved pass rate of the NIST test for

randomness.

3. We preformed a comparative analysis of key quality from different bit streams with different

6

bit extraction algorithms and environmental sources.

4. We build a prototype implementation of MOONSHINE that runs on real context-based

authentication hardware. We evaluate our prototype on several types of environmental noise. Our

results show that MOONSHINE is generalizable to different context based authentication

mechanisms.

Our methods make some mild assumptions about the characteristics of the environmental

source noise process. We model the source process as the sum of a band-limited deterministic

signal and additive white Gaussian noise.

CHAPTER TWO

BACKGROUND

Devices that use context-based security take advantage of the fact that the common

contextual information is shared only by a limited group of closely located devices. The presence

of common contextual information is evidence that the devices are located in the same place

simultaneously, which implies that they legitimately belong to the same user. The keys generated

from contextual information can establish initial trust (as a pairing key) and protect subsequent

communication (as a cryptographic key). This eliminates the need for human involvement for

making, entering, and managing a secret key, which can dramatically improve the overall

usability of systems that currently rely on passwords to protect data. In addition, the time-varying

nature of contextual information also allows devices to use a new key for each pairing attempt or

periodically update the cryptographic key, which significantly reduces the attack window for

adversarial agents.

Similar studies [19, 20, 22, 18], show that the act of calculating the amount of

randomness in an environmental signal is not straightforward. We cannot just sample the source

and create a histogram to compute the statistical entropy because the samples are not

independent. Most of the time, environmental noise contains some deterministic component,

causing samples to be correlated. This deterministic component makes the entropy computation

meaningless. Techniques exist for computing entropy rates from a signal’s power spectral density

7

8

(PSD), but they are unstable for correlated random processes. Our contribution is to introduce a

stable method to calculate the entropy rate from a signal’s PSD that works on arbitrary random

processes.

An Overview of the Standard Context Based Authentication Process

This section gives a broad overview of the process devices and goes through to generate

random keys from environmental noise. We assume that there are two devices that are both

located near each other and measuring the same random environmental noise. Most

context-based authentication schemes involve three basic steps: noise harvesting, key generation,

and reconciliation.

1. Noise Harvesting: In the first step, the device gathers a sequence of samples from an

environmental noise process. This is usually done by a microcontroller with an analog-to-digital

converter. These samples are typically filtered to remove undesirable features and time

synchronized by sending messages over a public channel.

2. Bit Extraction (the focus of this paper): Raw samples gathered from the environmental

noise process are then converted by a fuzzy extractor into a sequence of bits that will be a key.

Generally, a few bit errors (1-10%) between authenticating devices are permitted in the extracted

bit sequence. The most popular bit extraction technique is to divide the sequence of raw noise

samples into bins of 10-20 samples each.

3. Key Reconciliation: After bit extraction, each device will have a sequence of bits in memory

that represents a key. Even though the devices are located nearby one another, differences in their

measurements of the raw environmental noise will have caused spurious errors in the extracted

9

bit sequences. Key reconciliation is the process by which two nearby devices exchange messages

with one another over a public channel to resolve those bit differences. At the end of this step, if

both devices are honest and located in the same vicinity, they will each hold identical

authentication keys that can be used to encrypt data or validate their identities to one another.

Fuzzy Extractors Context-based authentication relies on the authenticating devices

observing nearly identical environmental noise signals to base their keys. But even two nearby

devices may read different values from their respective sensors during an event that creates noise.

If the event is closer to one device than the other, they will observe slightly different noise

patterns and generate different keys. Fuzzy extractors account for inconsistencies in observed

environmental noise by examining noise and use a mapping function, which all the devices in the

system share, to map the observed noise to a new value.

NIST Test for Randomness The NIST test for randomness is a software suite that

evaluates the quality of a random bit sequence. It consists of 15 separate tests that analyze the bit

stream bit-wise, block-wise, and superblock-wise. MOONSHINE’s goal is to modify a bit

sequence to increase the number of NIST tests that it passes. Passing more NIST tests should be

the goal of any random number generator to verify that generated keys are random. We use the

NIST tests for randomness as a benchmark for key quality.

The NIST test suite’s input is a bit sequence, typically thousands to hundreds of

thousands of bits in length. For each test in the suite, the input bit sequence is divided into

blocks, and each block is evaluated independently. The output of a typical run of the suite, shown

in Table 1, lists two crucial figures for each of the 15 tests: a p-value, and the proportion of bits,

10

blocks, or superblocks that passed the test.

p is the probability that a true random number generator would have produced a less

random output than the given test input sequence. p values closer to 1 are better, and p values

closer to 0 are worse. C1, C2, ...C10 represent the number of p values that lie in the intervals

[0.0, 0.1), [0.1, 0.2), ..., [0.9, 1.0).

The proportion output gives the fraction of blocks that passed each test in the suite. We

want the proportion of passes to be as close to unity as possible. In general, the tests in the NIST

suite need a minimum of 1000 bits to evaluate the quality of the sequence—shorter sequences

cannot be evaluated with high confidence. Each stream of bits needs to be at least 1000 bits, or

our NIST test suite fails internally. Therefore, if enough bits exist, we divide the stream into 100

blocks of at least 1000 bits in size. The test suite divides sequences into blocks of 100 bits each

and subjects each block to the suite of 15 tests.

A Review of the Typical Set and the Asymptotic Equipartition Property

One of the most significant characteristics of cryptographic keys is that their bit sequences

be uniformly distributed—that is that each bit sequence should be equally probable. If some bit

sequences in the key are more likely than others, it would be easy for an attacker to guess the

chosen key. But sources that generate independent and uniformly distributed random numbers are

typically challenging to build. As previous work in context-based authentication has

demonstrated, most environmental noise does not yield uniformly distributed samples. How can

we generate uniformly distributed numbers from a nonuniform source?

Suppose we independently sample a nonuniform source many times in succession. The

11

0 20 40 60 80 100 1200

50

100

150

200

250

5
6
7
8
9

Nu
mb

er o
f E

xam
ple

s

Sequence Index

Sequence Length

0

50

20

100

250

200

150

0 40 8060 100 120

N
um

be
r o

f e
xa

m
pl

es

Sequence index

5-bit
6-bit
7-bit

8-bit
9-bit

Figure 2. A sorted histogram of variable-length bit sequences generated from measured
environmental noise.

sequences of samples we obtain from that sampling process can be divided into a typical set and

a non-typical set. The probability that a sequence of independent samples lies in the typical set

approaches 1 for sufficiently long sequences. Furthermore, all sequences in the typical set are

almost uniformly distributed. This result is called the asymptotic equipartition property. Figure 2

shows histograms of bit sequences of different lengths, sorted from most probable to least

probable. Bit sequences do not need to be very long before they begin to exhibit this

almost-uniform characteristic.

Entropy Rate of a Noisy Bandlimited Signal

This section develops a new technique for measuring the entropy rate of a bandlimited

signal from its power spectral density (PSD). We begin with the Burg Max Entropy Theorem,

which compares a signal’s PSD and its entropy rate. But as we will see, Burg’s theorem is

intractable to compute for signals more than a few samples in length. We develop a

12

computationally-tractable method for calculating the entropy rate of reasonably-sized signals

(several thousand samples long).

We could use the Shannon-Hartley Channel Capacity theorem, which relates the noisy

signal’s entropy rate to an SNR. The difficulty with this method is that it is not clear how to

interpret the SNR in situations where we are dealing only with noise. In most context-based

authentication scenarios, we want as much uncorrelated noise as possible, and we try to filter out

everything else. We would prefer to have an expression for entropy rate that is a function of the

power spectral density of the harvested randomness signal because that does not require us to

measure the SNR.

System Model

Suppose we harvest entropy from some environmental signal that is composed of a

deterministic part and a random part:

X(t) = D(t) + Z(t) (1)

Where D(t) is an unknown bandlimited signal deterministic in time and Z(t) is additive

white Gaussian noise (AWGN). X(t), D(t) and Z(t) are assumed to be continuous in time. This

model is used by many context-based authentication schemes, including VOLTKEY [17], H2H

and H2B [25, 19]. We can represent D(t) as an expansion in the basis of sinusoids:

D(t) =
N∑
k=0

akcos(2πkft+Θ)

13

Where the aks are expansion coefficients and Θk is the phase angle, modelled as a uniformly

distributed random variable on [−π, π].

Theorem 0.7.1. D(t) is a stationary process.

Proof. See Appendix A.

The autocorrelation function is the same for all time shifts, meaning that its value is only

dependent on the lag t1 − t2, not on the absolute time t1 or t2. We have verified that the ACF

depends only on time shift for functions of the same form with (a) more than two terms and (b)

various combinations of coefficients on each term. This is the criterion for stationarity.

We model the entropy source X(t) as a stochastic process that can be sampled discretely

in time, yielding a sequence {Xm}. In this paper, {Xm} is the sequence of ADC samples of the

environmental noise process.

Computing the Entropy Rate from the PSD

Our goal is to get a bound on the source process’s entropy rate {Xi}, which can be

directly computed from the process’s power spectral density. We want an inequality similar to the

Shannon-Hartley channel capacity bound but where the signal bandwidth and SNR are directly

computed from the properties of the source process’s PSD.

Assuming that the entropy source is a wide-sense stationary (WSS) stochastic process (as

we demonstrated in Theorem 0.7.1), we can compute its autocorrelation function by taking the

inverse Fourier transform of the PSD [11]: RXX(τ) = F−1(S(f))1:

1This is called the Wiener–Khinchin theorem.

14

Theorem 0.7.2. Burg’s Maximum Entropy Theorem

In general, the maximum entropy rate stochastic process {Xi} satisfying the constraints

RXX(k) = E [XmXm+k] = αk, k = 0, 1, 2, ..., p (2)

is the pth-order Gauss-Markov process of the form

Xm = −
p∑

k=1

akXm−k + Zm (3)

Proof. See [4].

In other words, each new sample Xm is a linear combination of the previous p samples

plus some iid additive white Gaussian noise Zm ∼ N (0, σ2). The aks are chosen to satisfy

Equation 2. We can use the Yule-Walker equations to calculate the aks from σ and the αks, the

values of the autocorrelation function of the source process {Xi} [4].

Burg’s maximum entropy theorem holds without assuming that {Xm} is broad sense

stationary. However, to compute the αks from the PSD, we need the source process D(t) to be

wide sense stationary. We can write each Xm−k as an expansion in the basis of complex

sinusoids:

Xm = −
p∑

k=1

N∑
l=0

akble
−i2πlfm/N + Zm (4)

In Theorem 0.7.1, we demonstrated that the source process of interest is stationary under

some reasonable assumptions, and therefore it satisfies the conditions in Equation 2. In fact, the

15

αks from Equation 2 can be directly read from the autocorrelation function of the source process,

which is the inverse Fourier transform of the PSD.

Rényi Entropy

Definition 0.7.1. Rényi Entropy Let X be a random variable with an alphabet X and distribution

pX(x). The Rényi Entropy of X is defined as

R(X) = −log2
∑
x∈X

pX(x)
2

Bennett et. al. demonstrated [2] that the Rényi entropy is a lower bound on the number of

bits of private information that can be distilled after key reconciliation. More generally, Rényi

entropy is a convenient tool for estimating the uncertainty in a random variable. By Jensen’s

inequality, we have that Rényi entropy is upper bounded by the Shannon entropy:

R(X) ≤ H(X)

with equality when X ∼ Unif(X).

Computing Rényi Entropy Rate Plugging in our model for Xm from Equation 4 into the

expression for Rényi Entropy:

R(Xm) = − log2E
[
pX(x)

2
]

= − log2
∑
x∈X

Pr

[
−

(
p∑

k=1

N∑
l=0

akble
−i2πlfm

N + Zm

)
= x

]2

16

Where in the second step, we plug in the discrete Fourier transform representation of our

signal. We will now modify the limits on the double sum. First, we will set p = N , so that the

Markov process’s order is a complete sampling window. Second, we will drop the l = 0 term in

the DFT, assuming no DC offset, that the sample process has zero mean. This allows us to

combine the double sum into one sum that runs from 1 to N .

R(Xm) = − log2

2b−1∑
x=0

Pr

[
−

(
N∑
k=1

akbke
−i2πlfm

N + Zm

)
= x

]2

Here, the ak =
√
αk, the samples of the PSD of the deterministic signal. The outer sum

over x runs from 0 to 2b − 1 because we are assuming that the signal is being acquired with a

b-bit analog to digital converter.

Deterministic Signal Cases

If Deterministic Signal is Zero Suppose the deterministic component of the signal D(t)

is zero, and the only source of entropy is Zm, the additive white Gaussian noise, which we

assume is correlated among two or more context-based authenticators. For example, this would

be the case in the H2H body area network when there is no ECG signal on the skin, or in VoltKey

when there is no 120VAC power waveform. The only noise present is caused by cosmic

radiation.

This is a slightly unrealistic assumption, but it allows us to comprehend the amount of

entropy carried by the correlated random noise, whose statistical properties we know. In this

calculation, we want to find the amount of entropy carried by the AWGN, not the amount of

17

shared entropy—called mutual information—common to both devices.

Theorem 0.7.3. The Rényi entropy of the samples of the source process {Xi} is lower bounded

by the Rényi entropy of the AWGN Zm. In other words, R(X) ≥ R(Z). After observing the

deterministic component D of the source process, the remaining uncertainty in X is due to Z, the

AWGN.

Proof. See Appendix A.

Theorem 0.7.4. Let Zm be a single sample of the analog source process {Xi} consisting only of

additive white Gaussian noise. Then its Rényi entropy is R(Zm) ≈ log2 2σ
√
π.

Proof. See Appendix A.

Here we assume that the analog AWGN signal will be quantized by an analog-to-digital

converter with b bits of precision. The sum over the alphabet X is over all of the 2b possible

quantizations that can be produced by a b-bit ADC. In the last approximation, we are assuming

that σ is small, and we are capturing most of the probability of Zm within the limits of the ADC’s

dynamic range.

In a typical application where we are intentionally amplifying correlated random noise

Zm, we can expect σ to be on the order of 1/10th the dynamic range of our ADC. For reasonable

values of σ, the Rényi entropy is limited to about 10–12 bits per sample.

This is a lower bound on the Shannon entropy of X(t) for two reasons. First, as discussed

in §0.7.5, R(X) ≤ H(X) for all random variables X . Second, our computations in this section

assume that the deterministic component of X(t) is zero. Adding a nonzero deterministic

component will increase the entropy per sample (for proof of this claim, see Appendix A).

18

Still, the Rényi entropy rate of Zm is relatively high, even if we ignore the deterministic

component of the signal. Standard key extraction techniques used by context-based

authentication mechanisms are only able to extract one bit of entropy per ∼ 10 ADC samples: a

bit extraction rate about two orders of magnitude lower than what we would expect to be carried

by AWGN noise process alone!

If Deterministic Signal is Nonzero In the case where pth order Gauss-Markov process, it

is possible to compute the entropy rate without the Yule-Walker equations.

H(X) = H(Xp|Xp−1, ..., X0) (5)

= H(X0, ..., Xp)−H(X0, ..., Xp−1) (6)

=
1

2
log2(2πe)

p+1|Kp| −
1

2
log2(2πe)

p|Kp−1| (7)

=
1

2
log2

(
(2πe)

|Kp|
|Kp−1|

)
(8)

where Kp is the autocorrelation matrix of the process {Xm}. The Kp autocorrelation

matrix is called a Toeplitz matrix. It is rank N . Its top row is the individual values of the

autocorrelation function of the source process {Xk}. Using the fact that

E[XkXl] = RXX(k − l) = RXX(l − k)

for wide-sense stationary processes:

19

=



RXX(0) RXX(1) RXX(2) . . . RXX(N − 1)

RXX(1) RXX(0) RXX(1) . . . RXX(N − 1)

RXX(2) RXX(1) RXX(0) . . . RXX(N − 2)

. .

RXX(N − 1) RXX(N − 2) RXX(N − 3) . . . RXX(0)


Equation 8 gives the entropy rate in terms of the source process’s autocorrelation

function. Unfortunately, Equation 8 presents a fairly serious problem: the above result cannot be

computed directly for large values of N because the determinant of the autocorrelation matrix

approaches zero as N increases. Computing the determinant of large matrices is a problem in

general and not a pathology that is isolated to our autocorrelation matrix. We discuss below a

method for computing the ratio |Kp|/|Kp−1| without directly computing the determinants.

Calculating Entropy Rate without Directly Computing Determinants

The problem that we encounter when attempting to compute an entropy rate from

Equation 8 is that the columns of the autocorrelation matrix Kp are almost linearly dependent.

This makes the determinants of Kp and Kp−1 close to but not exactly zero, and the computer’s

floating point representation rounds the result of the determinant computation to zero. Our goal

here is to compute the ratio of the determinants, so we are not concerned about the fact that they

are individaully small.

Lemma 0.7.1. If R is an N ×N triangular matrix, then the determinant of R is the product of its

20

diagonal elements:

|R| =
N∏
i=1

rii

|Kp| and |R| are close to zero because all of its diagonal elements are less than 1, causing

the product in Lemma 0.7.1 to approach zero for large N . To be clear, R and Kp are both

full-rank matrices.

Lemma 0.7.2. If A = Q1R1 = Q2R2 are two QR decompositions of full rank square matrix A,

then

Q2 = Q1S

R2 = SR1

for some square diagonal S with entries ±1. If we require the diagonal elements of R to be

positive, then the factorization is unique.

Proof. Starting with the factorization A = Q1R1 = Q2R2 we can define a new matrix S in the

following way:

S = QT
2Q1 = R2R

−1
1

Since Q1 and Q2 are unitary, then S must also be unitary. Since R1 and R−1
2 are upper

triangular, then S must also be upper triangular. This means that S is a diagonal matrix with

elements ±1.

21

Q1R1 = Q2R2

Q1R1R
−1
2 = Q1S = Q2

Now, apply the constraint that R1 and R2 have positive entries on their diagonals, which

forces S = I and R1 = R2.

Theorem 0.7.5. The ratio |Kp|/|Kp−1| = rpp, the lower rightmost element of R in the QR

factorization of Kp.

Proof.
p∏

k=1

rkk = 10log
∏p

k=1 rkk = 10
∑p

k=1 log rkk

|Kp|
|Kp−1|

=
10

∑p
k=1 log rkk

10
∑p−1

k=1 log rkk
= 10

∑p
k=1 log rkk−

∑p−1
k=1 log rkk = rpp

Note that there is a unique QR factorization of Kp that has all positive diagonal elements

of R. We need R to have positive elements on its diagonal in order to be able to take their

logarithm. Using the above technique for computing the ratio |Kp|/|Kp−1|, we can rewrite

Equation 8 by bringing the factor of 1/2 into the logarithm and assuming that the source process

consists only of uncorrelated Gaussian noise:

22

H(X) = log2 σ
√
2πe

Where we replace the ratio of determinants with the standard deviation of the source

process. The Shannon entropy differs from the Rényi entropy only by a factor of
√
e/2.

Measuring Shared Randomness

The idea that underlies context-based authentication techniques is that two devices can

build a shared key from a shared randomness source, which is not observable by third parties.

Evaluating the key generation scheme matters not just how much randomness is encoded in the

signal to begin with but how much of that randomness is common to both devices.

The challenge in doing a theoretical analysis of the amount of mutual information that we

would expect to be common to two context-based authenticators is that it tends to be situationally

dependent. Different environments, different physical configurations of devices, and other

parameters weigh heavily on the correlation between two source processes.

To compare the amount of mutual information between two environmental signals to the

amount of entropy, we collected some voltage measurements at high frequency from the power

outlets in our institution’s offices using VOLTKEY prototypes and analyzed their characteristics.

We used standard techniques from §0.7.1 to sample and time-align voltage measurements without

key extraction or reconciliation. We split each signal into blocks of 150,000 samples (about two

seconds of data) and computed each block’s mutual information and entropy.

There is an order of magnitude difference in entropy and mutual information—the amount

of entropy common to two authenticating devices—for the signal that we tested in this

23

experiment. Said another way, only about 10% of the randomness measured by the VOLTKEYs is

common to both devices. The entropy that is not common to both devices cannot be used to

generate a key.

The entropy rate of the source process is about 16 bits per sample—slightly higher than

we would expect if we were gathering uncorrelated Gaussian noise. In Theorem 0.7.4, we

concluded that we would expect roughly 10–11 bits of entropy per sample.

Based on our experience working with context-based authentication methods, we think

that this order-of-magnitude-gap between entropy and mutual information is probably typical of

many noise types. However, it is not easy to be confident without conducting a more formal

analysis.

What is surprising is that conventional algorithms for extracting keys from a natural

environmental noise process only generate bits at about 1/10th the rate of the mutual information

in this experiment. We should expect the bit extraction rates to be slightly lower than the mutual

information rate to avoid errors—perhaps 1/2 or 1/3 bit per sample—but this discrepancy is

inefficient. Even with such low bit extraction rates, most context-based authentication schemes

still have to perform key reconciliation to eliminate bit errors in the shared key.

As we will see, the raw environmental signal’s entropy rate affects the performance of the

randomness distiller.

Related Work

The literature that is adjacent to our work can be roughly separated into two categories:

context-based authentication systems and cryptography.

24

Context-Based Authentication This body of work includes full-system implementations

of context-based authentication systems. In general, each system includes a mechanism for

measuring environmental randomness, extracting bit sequences, and resolving bit errors in the bit

sequences to form identical keys. Many different sources of environmental randomness have

been studied. For body area networks of wearable devices, the H2H [25], H2B [19], and

others [38, 1] systems measure ECG signals (heartbeat data). Secret From Muscle [37] EMG

(produced by skeletal muscles) and skin vibration has been used to generate keys between

low-cost wearable devices and implantable medical devices. Context-based authentication

systems targeted at stationary IoT devices have used context from audio, humidity, luminosity,

visual, and vibration channels [23, 29, 27, 24, 30, 16]. ProxiMate, Amigo, Ensemble, and

others [20, 32, 15, 7, 12] extract entropy from measurements of the radio frequency spectrum.

Because the randomness density of environmental signals tends to be low, context-based

authentication systems generally pass half or less than half of the NIST tests. We have compiled

the results of the NIST tests from a subset of the context-based authentication systems in Table

12.

Cryptography In the domain of cryptography and information theory, a lot of work has

focused on understanding the information content of signals. Key reconciliation—a suite of

techniques that context-based authentication relies heavily on—was originally developed for

exchanging information over quantum communication channels [3, 2, 21]. Fuzzy extractors [5],

fuzzy vaults [13], fuzzy commitment [14], and fPAKEs [6] are more modern cryptographic

2Not all context-based authentication systems publish their NIST test results. The results shown in Table 1 are
all the published results that we could find.

25

Pass Rate
Frequency

Block Frequency

Cumul. Sums, Fwd

Cumul. Sums, Rev

Runs
Longest Run

Rank
FFT Non-overlap Template

Overlap Template

Universal
Approx Entropy

Serial
Serial

Linear Complex

Jana et al. [12] 10/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

H2B [19] 8/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

H2H [25] 8/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Xi et al. [36] 10/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Secret from Muscle [37] 9/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VoltKey [17] 8/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VOLTKEY + Von Neumann corr. 11/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VOLTKEY + MOONSHINE 14/15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. NIST test results for various context-based authentication schemes (✓indicates pass).

techniques that are commonly used in key reconciliation by context-based authentication

systems. Also other authors have built techniques to create a more uniform distribution of biased

random number generators [8].

CHAPTER THREE

RANDOMNESS DISTILLATION

Once we have extracted a bit sequence from an environmental source noise process, we

need to distill its entropy to pass standard tests for randomness. Raw bit sequences extracted from

the environment often do not pass standard randomness tests (Table 1).

MOONSHINE is a randomness corrector that transforms independent identically

distributed samples from a random source to make their distribution closer to uniform. It works

by concatenating samples of the source into sequences. By the asymptotic equipartition property,

sequences of samples will be nearly uniformly distributed even if the individual samples are not.

Von Neumann’s corrector is a classical technique that aims to accomplish the same goal. We

compared the preformance of MOONSHINE to Von Neumann’s algorithm.

Von Neumann Corrector

The Von Neumann Corrector was an early technique used to normalize the histogram of

randomly generated bit sequences [33]. Its goal is to generate bit sequences in which 1 and 0 are

equally likely to occur from an input sequence of unfair coin tosses. The Von Neumann Corrector

groups the input sequence into pairs of bits, and it discards pairs in which both bits are the same

({1, 1} and {0, 0}). For pairs of bits that are not the same, The Von Neumann Corrector copies

only the first bit in the sequence to the output. It is essentially an application of a special case of

26

27

the Asymptotic Equipartition Property, for which the sequence length is 2. The Von Neumann

corrector did not improve the NIST test pass rate when we applied it to the raw VOLTKEY bit

sequences (see Table 1) enough to use its output as a cryptographic key. We need a new

technique to improve the quality of keys generated by context-based authentication systems.

MOONSHINE is a new entropy distillation technique that converts long bit sequences with

low entropy per bit into shorter bit sequences with high entropy. MOONSHINE takes as input a bit

sequence from a random generator and groups bits into blocks k. Each block of k bits represents

an integer in the range [0, 2k − 1]. MOONSHINE then generates a histogram of all k-bit integers

obtained from the raw input sequence. The resulting histogram is divided into two categories: the

typical set, which is almost uniformly distributed, and the non-typical set, which occurs either

much more frequently or much less frequently than average. Half of the input sequences are

assumed to be part of the typical set, which is retained, and the other half of the sequences are

discarded.

After discarding the non-typical set, we can represent the remaining elements of the

typical set using k − 1 bit sequences. The new k − 1 bit indices are the output of the corrector.

Fig. 3(b) shows the histogram of the raw bits extracted from a VOLTKEY device grouped into

7-bit blocks and assigned indices in the range [0, 127]. Fig. 3(a) shows the histogram of data after

it has been corrected by MOONSHINE. For comparison, Fig. 3(c) shows a histogram of 7-bit

numbers generated by python’s random number generator.

In Fig. 4(a), we plot the number of bits remaining after correction by MOONSHINE as a

function of the sequence length. The Von Neumann corrector discards over 80% of the bits in the

28

input sequence. By tuning the subsequence length, MOONSHINE’s bit usage can be adapted into

any size of data given by the user.

Our Implementation of MOONSHINE

MOONSHINE examines a binary stream, partitions that stream into bit sequences, and

creates a histogram of the partitioned bit sequences. MOONSHINE separates the extracted

sequences into two categories: typical sequences and non-typical sequences. It then discards

non-typical sequences and maps the typical sequences to new values based on those new

histograms. The key components of our algorithm are:

1. Sequences of size k get remapped into sequences of size k − 1.

2. We drop bits after each individual sequence from the bit stream. We discuss the reasons for

doing this at the end of this section.

3. Bit sequences that occur most frequently on the input stream are dropped. The remaining

sequences (the typical set) are remapped to new bit sequences.

The details of our algorithm are below.

1. Partition Bit Stream into Sequences MOONSHINE is given a bit stream, while a system is

running, generated from environmental noise as input. We first want to partition the bit stream

into subsequences of length k. If we let k = 8, we then initialize four arrays two of them are of

size 2k while the other two arrays are size 2k−1. These arrays each have different jobs. One of the

arrays (called A) keeps track of the number of occurrences of each subsequence in the input bit

stream. A holds a histogram of integers extracted from the environmental noise source, similar to

that shown in Fig. 3. As we read bits from the input stream, we use array B to keep track of the

29

order in which particular subsequences first occur. After converting a subsequence from the input

of length k to an integer and updating arrays A and B, we skip m bits in the input sequence.

2. Find Highest Occurring Half of Sequences To extract the typical set, we throw away the

most commonly occurring subsequences of bits. To do that we compare the number of

occurrences of each subsequence to all others in A. After knowing which subseqeunces are most

common, we drop the most common. If a index is found to be in the highest half we change that

index in A to be −1. We mark the same indices in B.

3. Remap Binary Sequences and Return the Changed Stream The last array, C, will be used

to hold the remappings. Now that we know which values to keep, we iterate through B and if the

value is not marked as −1 remap it to the next available integer in the C. If a number appears in

the stream a second time that hasn’t been remapped too, we throw it out. After we preform these

steps the result will be a bit extracted stream. We also skip over the same amount of bits we did

in the first step. For example, if 192 is the first number that appears in the bit stream, and when

indexed in array A the value is not −1. Whenever we see the value 192 in the bit stream, we

replace that value with its remapped equivalent that is defined in C. So, every occurrence of 192

in the input data stream will be replaced with zero. Also, we are replacing an original bit stream

of size k with a new bit stream of size k − 1. Therefore dropping the last bit.

Real Environmental Signals

Our analysis in §0.7.7 assumes that the environmental signal is a stationary process,

which is a valid assumption during periods of everyday activity. But during periods of little or no

activity, many environmental noise signals are not stationary. During inactivity, the entropy rate is

30

effectively zero, causing samples of the source noise process not to be independent or identically

distributed. The result is that we get very long runs of zeros or ones in our extracted bit sequences

during periods of inactivity. We can repair the bit sequence by dropping bits from the input.

Bit dropping has the effect of shortening long runs of ones or zeros during periods of

inactivity. It can not make a non-stationary process stationary, but it can reduce the length of

non-stationary sequences, making them less influential in the overall signal’s properties.

An alternative we considered is to wait until the source noise process has a high enough

entropy rate before beginning key generation. But waiting for the environmental entropy rate to

increase above a threshold is impractical for real systems because two authenticating devices may

not agree on the exact moment when the entropy rate becomes high enough. Coordinating

between multiple devices would require additional communication, which wastes time. Another

advantage of bit dropping is that it allows keys to be generated immediately when requested by

the user rather than waiting for an acceptable entropy rate in the environmental noise.

Choosing Parameters k and m

The quality of keys generated by MOONSHINE depends heavily on our parameters in

Algorithm 1. The relationship between parameter values and key quality is generally

monotonic—higher parameter values usually produce better keys. Larger values of k and m

cause MOONSHINE to analyze the input datastream in longer blocks, reducing the similarity of

nearby patterns. The type of environmental source (audio, voltage, etc) also can change the

relationship between parameter value and key quality.

In our implementation of MOONSHINE, an authenticator analyzes the noise source in real

31

time to find the parameter values that maximize key quality and shares those parameters with the

other device that is trying to pair. Both devices then use the shared parameter values to apply

Algorithm 1, generating a shared key.

MOONSHINE uses a warmup period during which the device continuously samples the

environmental noise source, building a bit sequence histogram. Once one device has collected

enough data to characterize the properties of the environmental noise—encoded by the

histogram—key generation commences. We use the histogram generated during warmup to

define mappings from input bit sequences to output bit sequences during key generation.

Algorithm 1: Algorithm for MOONSHINE.
Input: A bit sequence B = {b1, b2, . . . , bN}
Input: Number of bits in a subsequence k

Input: Number of bits to skip between subsequences m

Output: A mapping from B → ZN/2

for j ← 1 to k do
sequences[j].frequency ← 0 // Initialization

sequences[j].value← 0

sequences[j].order ← NULL

/* Count the frequency of occurrences of subsequences. */

for i← 1 to N by m+ k do
subseq ← {bi, bi+1, . . . , bi+k−1} // subseq is k-bit int

sequences[subseq].frequency ++

sequences[subseq].value← subseq

if sequences[subseq].order ̸= NULL then
sequences[subseq].order ← i/k;

sequences← sort(sequences) // sort by frequency ascending

sequences← sequences[1..N/2] // Toss most-freq sequences

return sequences

CHAPTER FOUR

EVALUATION OF MOONSHINE

In this section, we evaluate the performance of MOONSHINE with input data gathered

from various forms of context-based authentication in real-world environments. Code is available

from our GitHub repository1. Our ZIA datasets are available from [34].

We show that MOONSHINE can generate high-quality keys from environmental noise

sources with relatively low entropy rates, making them robust against attacks. Before presenting

evaluation results, the following details the hardware and parameter settings as well as main

evaluation metrics.

Datasets

The authors of VOLTKEY [17] lent us prototypes of their hardware, which allowed us to

benchmark our prototype implementation of MOONSHINE on a realistic hardware platform. In

addition to data gathered by VOLTKEY hardware, we used the ZIA datasets published by

Fomichev et al. [10]. The dataset consists of data streams collected from seven types of

sensors—acceleration, luminosity, temperature, humidity, barometric pressure, magnetometer,

gyroscope within different contexts. It includes long sequences of synchronized data from each

sensor in an office setting, a mobile device, and a car. The authors preprocessed the data to

generate bit sequences for each setting (Office, Mobile, Car). All preprocessed bit sequences
1https://github.com/jweezy24/Moonshine

32

https://github.com/jweezy24/Moonshine

33

from the dataset have low entropy density, caused mainly by long periods of inactivity in the

underlying source noise processes. None of the bit sequences in the Office, Mobile, or Car

datasets pass the NIST tests before being processed by MOONSHINE.

We also generated a dataset of radio frequency measurements similar to those published

in [12, 20]. The hardware we used to collect the RF dataset consisted of a short stub of wire

connected directly to the analog-to-digital converter input of a microcontroller. Our RF

measurements produced relative high-quality bit sequences which passed most of the NIST tests

before being processed by MOONSHINE.

The audio dataset [31] as well as the mobile, office, and car datasets [9] came from

publicly available postings. To evaluate the audio, we created the bit stream using a commonly

used algorithm[28]. Larger datasets are evaluated on a server-class machine because of memory

restrictions on our Cortex M4. The server is also needed for NIST test evaluation, as the tests are

not compatible with the Cortex M4 board. We also evaluate our algorithm on VOLTKEY

hardware in real-time to characterize its performance on an IoT-class platform.

Evaluation metrics We evaluate the performance of MOONSHINE with various metrics.

1. NIST test pass rate: the fraction of NIST tests (discussed in §0.7.1) that pass. To generate

high-quality keys, we want the NIST test pass rate to be as high as possible.

2. Data retention rate: the fraction of input data retained in the output. We want to retain as much

information as possible after processing by MOONSHINE.

3. Diversity of datasets: We used a wide range of data from varying sources.

34

Subsequence Length

In this section, we want to understand how the key quality depends on the length of

subsequences processed by MOONSHINE. According to the AEP (§0.7.2), longer subsequences

should generate better keys. In Fig. 4(b) we plot the NIST test pass rate as a function of

subsequence length for MOONSHINE-corrected data. We can achieve a near-perfect pass rate for

subsequences of at least 6 bits. The same figure also plots the NIST test pass rate of the Von

Neumann corrector for the same input data.

The tradeoff in MOONSHINE is that the corrector discards a portion of the input data

stream in the process of distilling its randomness. Fig. 4(a) shows the amount of data remaining

after randomness distillation.

Analyzing bits in longer subsequences increases the keys’ quality because the typical set

becomes more uniformly distributed on longer bit sequences. As the sequences that MOONSHINE

considers become longer, there is a starker separation between the typical set and the non-typical

set2. For long sequences (8 or more bits), the non-typical set represents a smaller fraction of the

overall data, and more of the sequences that we actually observe are elements of the typical set.

Since MOONSHINE retains elements of the typical set and discards elements of the non-typical

set, it makes sense that we would retain more overall data if we consider longer bit sequences.

Run Time

In Fig. 4(c), we plot the run time of MOONSHINE on the VOLTKEY hardware, which uses

an ARM Cortex M4 microcontroller running at 48 MHz. MOONSHINE does not add a substantial

2This is the trend that is visualized in Fig. 2.

35

2 4 6 8 10 12
70

80

90

100

2 4 6 8 10 12
0

20

40

D
at

a
re

m
ai

ni
ng

 (%
)

Bit sequence length
(a)

Bit sequence length
(b)

N
IS

T
te

st
 p

as
s r

at
e

(%
)

3 6 9
0.3

0.4

0.5

0.6

Ti
m

e
(s

)

Bit sequence length
(c)

Moonshine Von Neumann

Figure 3. Evaluation of MOONSHINE on VOLTKEY: (a) Percent of bits kept after MOONSHINE.
(b) Percentage of NIST tests that pass. (c) Runtime of MOONSHINE on ARM Cortex-M4
microcontroller.

amount of time to the key generation process, even when processing long bit sequences. By

comparison, the sampling, bit extraction, and key reconciliation steps take about 20 seconds on a

pair of VOLTKEYs. This test ran on an input data stream of 200,000 bits gathered directly from

the VOLTKEY. The distilled bit sequence is in the tens of thousands of bits in length, much

longer than generally used for an authentication key. MOONSHINE can distill randomness from

the input data sequence in a reasonable amount of time. The run time should not be substantially

different when using different datasets as inputs.

Key Quality

In this section, we evaluate the quality of keys generated by MOONSHINE using the NIST

test for randomness [26]. MOONSHINE makes two parameters available to the user: bit sequence

length and bit drop length (k and m in Algorithm 1). Later evaluation will focus on the effect

those parameters have on NIST test pass rates. Fig. 5 shows the NIST test pass rate as a function

36

of k and m for the office, mobile, and car datasets, which generate raw data with similar entropy

densities before being processed by MOONSHINE. Overall, MOONSHINE significantly improves

the quality of keys generated from a wide variety of environmental noise sources.

Choosing Parameters m and k The general trend is that larger parameter values tend to

generate higher-quality keys, so we would advise users of MOONSHINE to choose larger

parameter values to improve key quality. This is because larger parameter values cause

MOONSHINE to process the input data stream in longer blocks, resulting in less local similarity.

An exception to the trend is in the Car and Mobile 1 datasets, in which the most

significant parameter values cause almost all NIST tests to fail. In those two datasets, the raw

input datastream has such low randomness density already that MOONSHINE removes a

substantial portion of the input bits when it is run with large parameter values. This creates

problems because the NIST test suite needs a minimum number of bits to determine whether a bit

sequence passes each test. The output data stream fails the NIST tests when MOONSHINE

removes too many bits. We expect that keys generated from the Car and Mobile 1 datasets that

fail with large parameter values would pass nearly all NIST tests if the datasets were larger. In

practice, a system that used MOONSHINE to distill keys from low-entropy sources would gather

more data from the environmental noise source to generate a high-quality key.

We found that the office, mobile, and car datasets have low randomness density and did

not pass any NIST test before being processed by MOONSHINE because of their heavy reliance

on human activity to generate randomness. During periods of inactivity—such as a refuelling

stop during data collection in the car—result in long runs of ones or zeros in the generated bit

37

0 64 128
0

50

100

150

0 128 256
0

1000

2000

3000

0 128 256
0

100

200

300

7-bit binary number
(a)

8-bit binary number
(b)

8-bit binary number
(c)

Nu
m

be
r o

f e
nt

rie
s

Figure 4. Histograms of random numbers generated by python’s RNG compared to those
generated by MOONSHINE and VOLTKEY. (a) 7-bit sequences after removing elements of
nontypical set. (b) Raw 7-bit sequences taken from VoltKey. (c) 7-bit sequences from Python’s
RNG.

sequences, causing the NIST tests to fail. MOONSHINE performs well even on low-quality

datasets like Car and Mobile.

Fig. 4(b) shows the NIST test pass rate of MOONSHINE running on VOLTKEY as a

function of bit sequence length. The entropy rate of VOLTKEY (discussed in §.3) is much higher

than the corresponding entropy rate of the car, office, and mobile datasets. The higher entropy

rate of VOLTKEY gives us more entropy per key bit and better NIST test pass rates for the raw bit

stream. Raw bit sequences generated by VOLTKEY pass just over half the tests in the NIST suite.

MOONSHINE increases the randomness across all data sets we evaluated.

Bi
ts

 D
is

ca
rd

ed

Bit Sequence Length

N
IST Pass Rate

Larger Parameter Values Tend to Give Be�er KeysLighter Colors are Be�er
RF Frequencies Audio Car Mobile 2 Mobile 1 O�ce 1 O�ce 2 VoltKey

Figure 5. Fraction of NIST tests passed after applying MOONSHINE as a function of discard
length (on the y-axis) and bit sequence length (on the x-axis).

38

Bi
ts

 D
is

ca
rd

ed

Bit Sequence Length

% of D
ata Rem

aining
RF Frequencies Audio Car Mobile 2 Mobile 1 O�ce 1 O�ce 2 VoltKey

Figure 6. Fraction of data retained after applying MOONSHINE as a function of discard length (on
the y-axis) and bit sequence length (on the x-axis).

Discard Length

In this section, we test how the NIST test pass rate depends on the number of bits we

discard (parameterized by m in Algorithm 1) when processing the input stream. We discussed the

technique of discarding bits in the input stream in §0.8.3. Fig. 5 shows a heat map of the NIST

test pass rate as a function of discard length (y-axis) and input sequence length (x-axis). Blue

colors represent low NIST pass rates, and greens represent higher pass rates (lighter blues and

greens are better).

In Fig. 5, there is a general correlation between data retention and NIST Test pass

rate—the more data MOONSHINE removes, the more NIST tests it passes, resulting in

higher-quality keys. Furthermore, the datasets that are higher quality to begin with (such as,

VOLTKEY, Audio, and RF) retain more data after applying MOONSHINE. The lower-quality

datasets have more repetition that MOONSHINE must remove to produce a high-quality key.

Data Retention

In this section, we evaluate the fraction of input bits that remain in a key after being

processed by MOONSHINE. Fig. 6 is a color graph which represents the percentage of data

retained after MOONSHINE distills entropy from the input bit stream. Data retained is a function

of the bit sequence length k and the discard length m.

39

VOLTKEY, which generates raw bit sequences with relatively high entropy rates, shows

an increasing trend of data retained as bit sequence length increases. According to the AEP,

longer sequences of samples will be more uniformly distributed and have a wider separation

between the typical set and the nontypical set. Since MOONSHINE throws away elements of the

nontypical set, there will be less information to throw away as sequence lengths get longer.

The office, mobile, and car data exhibit the same trend. However, the datasets retain less

data. This is caused by the long periods of inactivity in those datasets. Long runs of ones and

zeros on the input bit sequence represent a large percentage of the total bits extracted.

MOONSHINE eliminates those long runs of ones and zeros even when k is small.

MOONSHINE works by selectively dropping bits from the raw input bit stream, so we

expect that the output bit sequences will be shorter than the input. The bits that are dropped by

MOONSHINE are those that carry the least amount of information.

CHAPTER FIVE

DISCUSSION

In this section, we give some practical advice for designers of context-based

authentication mechanisms which is based on the findings in this paper. We gave two methods of

estimating the entropy rate encoded in an environmental noise signal: we calculate the

approximate Rényi entropy rate of a Gaussian noise process in Theorem 0.7.4, and we give the

more general form of a Shannon entropy rate of a noise process that includes a periodic signal

plus additive white Gaussian noise in Equation 8.

Advice #1: Filter out periodic noise from the environmental noise signal before

digitizing The goal of any context-based key generation scheme is to maximize the mutual

information rate between two authenticators. Since mutual information of two random variables

is upper-bounded by each random variable’s entropy, we must maximize entropy of the individual

source noise processes is to maximize mutual information.

Advice #2: Apply a Randomness Corrector to the Authentication Key Before

Reconciliation The raw bit sequences generated from environmental noise tend to have some

predictable structure that causes them to fail the NIST test suite (Table 1). This seems to be

caused by a low information density, or randomness per bit, in the extracted bit stream. Using

MOONSHINE, we can distill the randomness from a long bit sequence into a shorter bit sequence,

yielding a more secure key. The penalty that we pay when using a randomness corrector is that

40

41

we must collect 2− 3× as many bits from the environmental noise process.

Advice #3: Use a High-Entropy Environmental Noise Source if it is Available.

MOONSHINE is able to distill entropy from a high-entropy source of randomness like VOLTKEY

to generate cryptographic keys that pass the NIST test suite. We expect that other context-based

authentication systems that generate bit sequences that can pass around half of the NIST tests

would benefit significantly from MOONSHINE. MOONSHINE is also able to improve key quality

of bit sequences generated by extremely poor entropy sources like the mobile, office, and car

datasets we analyzed in §0.9.

CHAPTER SIX

CONCLUSION

In this work, we presented MOONSHINE, a technique to distill randomness from

low-entropy sources. We observed that keys generated from environmental noise sources are

predictable largely because the distribution that of the random variable that we use to generate

keys is often nonuniformly distributed. Our methods take advantage of the asymptotic

equipartition theorem, which says that long sequences of iid samples from of any random

variable will be almost uniformly distributed even if the the distribution of the individual samples

is not uniform. MOONSHINE uses the AEP to identify and remove sequences of samples that are

not uniformly distributed.

In our evaluation, we use the NIST test for randomness to evaluate the quality of keys

generated by MOONSHINE operating on input data from several publicly available datasets. Our

evaluation showed that MOONSHINE produces keys with substantially higher NIST test pass rates

than the raw bit sequences extracted from multiple different environmental sources.

42

APPENDIX A

PRELIMINARY PROOFS

44

Proof of Theorem 0.7.1

Starting with the simple case of N = 2:

E [Dt1Dt2] = E[(a1 cos(2πft1 +Θ) + a2 cos(4πft1 +Θ))×

(a1 cos(2πft2 +Θ) + a2 cos(4πft2 +Θ))]

(9)

= E
[
a21 cos(2πft1 +Θ) cos(2πft2 +Θ)

]
+

E [a1a2 cos(2πft1 +Θ) cos(4πft2 +Θ)]+

E [a1a2 cos(4πft1 +Θ) cos(2πft2 +Θ)]+

E
[
a22 cos(4πft1 +Θ) cos(4πft2 +Θ)

]
(10)

=
a21
2
E [cos(2πf(t1 − t2))] +

a22
2
E [cos(4πf(t1 − t2))]

(11)

The cross terms in Eq. 10 evaluate to zero because the expectation is the inner product of two

orthogonal sinusoids. The terms involving Θ in Eq. 10 evaluate to zero because we are taking the

expectation over Θ, which is assumed to be uniformly distributed on [−π, π]. This leaves us with

an autocorrelation function in Eq. 11 that depends only on the difference (t1 − t2), which is the

criterion for stationary. This same line of reasoning applies for N > 2. This result can also be

ported to periodic signals by applying the appropriate limits. For N > 2, the same line of

reasoning applies because expectations that do not involve Θ will be taken over triples of

orthogonal sinusoids.

45

Proof of Theorem 0.7.3

Lemma .2.1. Let D and Z be random variables with alphabets D and Z respectively. Let

X = D + Z over alphabet X . Then:

R(X|D) = R(Z|D)

Proof.

R(X|D) =
∑
d∈D

PD(d)R(X|D = d) (12)

=
∑
d∈D

PD(d)(− log
∑
x∈X

P (X = x|D = d)2 (13)

=
∑
d∈D

PD(d)(− log
∑
x∈X

P (Z = x− d|D = d)2 (14)

=
∑
d∈D

PD(d)(− log
∑
z∈Z

P (Z = z′|D = d)2 (15)

= R(Z|D) (16)

After observing D, the remaining Rényi uncertainty in X is due to Z. Because conditioning

reduces uncertainty:

R(X) ≥ R(X|D) = R(Z|D) = R(Z)

46

Proof of Theorem 0.7.4

Proof.

R(Xm) = − log2

2b−1∑
k=−2b−1

Pr [bk ≤ Zm ≤ bk+1]
2

≈ − log2

2b−1∑
k=−2b−1

1

2πσ2
e−k2/σ2

≈ − log2

∫ +∞

−∞

1

2πσ2
e−k2/σ2

dk

≈ log2 2σ
√
π

Bibliography

[1] Taha Belkhouja et al. “Biometric-based authentication scheme for Implantable Medical
Devices during emergency situations”. In: Future Generation Computer Systems 98
(2019), pp. 109–119. ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.2019.02.002.
URL: http://www.sciencedirect.com/science/article/pii/S0167739X18325792.

[2] C. H. Bennett et al. “Generalized Privacy Amplification”. In: IEEE Trans. Inf. Theor. 41.6
(Nov. 1995), pp. 1915–1923. ISSN: 0018-9448. DOI: 10.1109/18.476316. URL:
https://doi.org/10.1109/18.476316.

[3] Christian Cachin and Ueli M. Maurer. “Linking Information Reconciliation and Privacy
Amplification”. In: J. Cryptol. 10.2 (Mar. 1997), pp. 97–110. ISSN: 0933-2790. DOI:
10.1007/s001459900023. URL: http://dx.doi.org/10.1007/s001459900023.

[4] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Hoboken, New
Jersey: Wiley.

[5] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. “Fuzzy extractors and cryptography, or
how to use your fingerprints”. In: Proc. Eurocrypt. Vol. 4. 2004.

[6] Pierre-Alain Dupont et al. Fuzzy Password Authenticated Key Exchange. Cryptology ePrint
Archive, Report 2017/1111. https://eprint.iacr.org/2017/1111. 2017.

[7] John E. Hershey, Amer Hassan, and Rao Yarlagadda. “Unconventional cryptographic
keying variable management”. In: Communications, IEEE Transactions on 43 (Feb. 1995),
pp. 3–6. DOI: 10.1109/26.385951.

[8] Charles Eckert, Fatemeh Tehranipoor, and John A. Chandy. “DRNG: DRAM-based
random number generation using its startup value behavior”. In: 2017 IEEE 60th
International Midwest Symposium on Circuits and Systems (MWSCAS) (2017),
pp. 1260–1263.

[9] Mikhail Fomichev et al. Index of supplementary files from ”Perils of Zero- Interaction
Security in the Internet of Things”. Zenodo, Jan. 2019. DOI: 10.5281/zenodo.2537721.
URL: https://doi.org/10.5281/zenodo.2537721.

[10] Mikhail Fomichev et al. Processed data from Office scenario from ”Perils of
Zero-Interaction Security in the Internet of Things”. Zenodo, Jan. 2019. DOI:
10.5281/zenodo.2537707. URL: https://doi.org/10.5281/zenodo.2537707.

47

https://doi.org/https://doi.org/10.1016/j.future.2019.02.002
http://www.sciencedirect.com/science/article/pii/S0167739X18325792
https://doi.org/10.1109/18.476316
https://doi.org/10.1109/18.476316
https://doi.org/10.1007/s001459900023
http://dx.doi.org/10.1007/s001459900023
https://eprint.iacr.org/2017/1111
https://doi.org/10.1109/26.385951
https://doi.org/10.5281/zenodo.2537721
https://doi.org/10.5281/zenodo.2537721
https://doi.org/10.5281/zenodo.2537707
https://doi.org/10.5281/zenodo.2537707

48

[11] John A. Gubner. Probability and Random Processes for Electrical and Computer
Engineers. New York, NY, USA: Cambridge University Press, 2006. ISBN: 0521864704.

[12] Suman Jana et al. “On the Effectiveness of Secret Key Extraction from Wireless Signal
Strength in Real Environments”. In: Proceedings of the 15th Annual International
Conference on Mobile Computing and Networking. MobiCom ’09. Beijing, China: ACM,
2009, pp. 321–332. ISBN: 978-1-60558-702-8. DOI: 10.1145/1614320.1614356. URL:
http://doi.acm.org/10.1145/1614320.1614356.

[13] Ari Juels and Madhu Sudan. “A fuzzy vault scheme”. In: Designs, Codes and
Cryptography 38.2 (2006), pp. 237–257.

[14] Ari Juels and Martin Wattenberg. “A Fuzzy Commitment Scheme”. In: Proceedings of the
6th ACM Conference on Computer and Communications Security. CCS ’99. Kent Ridge
Digital Labs, Singapore: Association for Computing Machinery, 1999, pp. 28–36. ISBN:
1581131488. DOI: 10.1145/319709.319714. URL: https://doi.org/10.1145/319709.319714.

[15] Andre Kalamandeen et al. “Ensemble: Cooperative Proximity-based Authentication”. In:
Proceedings of the 8th International Conference on Mobile Systems, Applications, and
Services. MobiSys ’10. San Francisco, California, USA: ACM, 2010, pp. 331–344. ISBN:
978-1-60558-985-5. DOI: 10.1145/1814433.1814466. URL:
http://doi.acm.org/10.1145/1814433.1814466.

[16] Kyuin Lee et al. “ivPair: Context-Based Fast Intra-Vehicle Device Pairing for Secure
Wireless Connectivity”. In: Proceedings of the 13th ACM Conference on Security and
Privacy in Wireless and Mobile Networks. WiSec ’20. Linz, Austria: Association for
Computing Machinery, 2020, pp. 25–30. ISBN: 9781450380065. DOI:
10.1145/3395351.3399436. URL: https://doi.org/10.1145/3395351.3399436.

[17] Kyuin Lee et al. “VoltKey: Continuous Secret Key Generation Based on Power Line Noise
for Zero-Involvement Pairing and Authentication”. In: Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol. 3.3 (Sept. 2019), 93:1–93:26. ISSN: 2474-9567. DOI:
10.1145/3351251. URL: http://doi.acm.org/10.1145/3351251.

[18] Vincent van der Leest et al. “Hardware Intrinsic Security from D Flip-Flops”. In:
Proceedings of the Fifth ACM Workshop on Scalable Trusted Computing. STC ’10.
Chicago, Illinois, USA: Association for Computing Machinery, 2010, pp. 53–62. ISBN:
9781450300957. DOI: 10.1145/1867635.1867644. URL:
https://doi.org/10.1145/1867635.1867644.

[19] Qi Lin et al. “H2B: Heartbeat-based Secret Key Generation Using Piezo Vibration
Sensors”. In: Proceedings of the 18th International Conference on Information Processing
in Sensor Networks. IPSN ’19. Montreal, Quebec, Canada: ACM, 2019, pp. 265–276.
ISBN: 978-1-4503-6284-9. DOI: 10.1145/3302506.3310406. URL:
http://doi.acm.org/10.1145/3302506.3310406.

https://doi.org/10.1145/1614320.1614356
http://doi.acm.org/10.1145/1614320.1614356
https://doi.org/10.1145/319709.319714
https://doi.org/10.1145/319709.319714
https://doi.org/10.1145/1814433.1814466
http://doi.acm.org/10.1145/1814433.1814466
https://doi.org/10.1145/3395351.3399436
https://doi.org/10.1145/3395351.3399436
https://doi.org/10.1145/3351251
http://doi.acm.org/10.1145/3351251
https://doi.org/10.1145/1867635.1867644
https://doi.org/10.1145/1867635.1867644
https://doi.org/10.1145/3302506.3310406
http://doi.acm.org/10.1145/3302506.3310406

49

[20] Suhas Mathur et al. “ProxiMate: Proximity-based Secure Pairing Using Ambient Wireless
Signals”. In: Proceedings of the 9th International Conference on Mobile Systems,
Applications, and Services. MobiSys ’11. Bethesda, Maryland, USA: ACM, 2011,
pp. 211–224. ISBN: 978-1-4503-0643-0. DOI: 10.1145/1999995.2000016. URL:
http://doi.acm.org/10.1145/1999995.2000016.

[21] U. M. Maurer. “Secret key agreement by public discussion from common information”. In:
IEEE Transactions on Information Theory 39.3 (1993), pp. 733–742. DOI:
10.1109/18.256484.

[22] Rene Mayrhofer and Hans Gellersen. “Shake Well Before Use: Authentication Based on
Accelerometer Data”. In: Pervasive Computing. Ed. by Anthony LaMarca,
Marc Langheinrich, and Khai N. Truong. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 144–161. ISBN: 978-3-540-72037-9.

[23] Markus Miettinen et al. “Context-Based Zero-Interaction Pairing and Key Evolution for
Advanced Personal Devices”. In: Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. CCS ’14. Scottsdale, Arizona, USA: ACM,
2014, pp. 880–891. ISBN: 978-1-4503-2957-6. DOI: 10.1145/2660267.2660334. URL:
http://doi.acm.org/10.1145/2660267.2660334.

[24] Markus Miettinen et al. “Revisiting Context-based Authentication in IoT”. In: Proceedings
of the 55th Annual Design Automation Conference. DAC ’18. San Francisco, California:
ACM, 2018, 32:1–32:6. ISBN: 978-1-4503-5700-5. DOI: 10.1145/3195970.3196106. URL:
http://doi.acm.org/10.1145/3195970.3196106.

[25] Masoud Rostami, Ari Juels, and Farinaz Koushanfar. “Heart-to-heart (H2H):
authentication for implanted medical devices”. In: Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. CCS ’13. Berlin, Germany:
ACM, 2013, pp. 1099–1112. ISBN: 978-1-4503-2477-9. DOI: 10.1145/2508859.2516658.
URL: http://doi.acm.org/10.1145/2508859.2516658.

[26] Andrew Rukhin et al. “A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications”. In: ().

[27] Nitesh Saxena et al. “Secure device pairing based on a visual channel”. In: 2006 IEEE
Symposium on Security and Privacy (S P’06). May 2006, 6 pp.–313. DOI:
10.1109/SP.2006.35.

[28] D. Schürmann and S. Sigg. “Secure Communication Based on Ambient Audio”. In: IEEE
Transactions on Mobile Computing 12.2 (2013), pp. 358–370. DOI:
10.1109/TMC.2011.271.

https://doi.org/10.1145/1999995.2000016
http://doi.acm.org/10.1145/1999995.2000016
https://doi.org/10.1109/18.256484
https://doi.org/10.1145/2660267.2660334
http://doi.acm.org/10.1145/2660267.2660334
https://doi.org/10.1145/3195970.3196106
http://doi.acm.org/10.1145/3195970.3196106
https://doi.org/10.1145/2508859.2516658
http://doi.acm.org/10.1145/2508859.2516658
https://doi.org/10.1109/SP.2006.35
https://doi.org/10.1109/TMC.2011.271

50

[29] Dominik Schürmann and Stephan Sigg. “Secure Communication Based on Ambient
Audio”. In: IEEE Transactions on Mobile Computing 12.2 (Feb. 2013), pp. 358–370. ISSN:
1536-1233. DOI: 10.1109/TMC.2011.271.

[30] Babins Shrestha et al. “Drone to the Rescue: Relay-Resilient Authentication using
Ambient Multi-sensing”. In: Financial Cryptography and Data Security. Ed. by
Nicolas Christin and Reihaneh Safavi-Naini. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 349–364. ISBN: 978-3-662-45472-5.

[31] Joachim Thiemann, Nobutaka Ito, and Emmanuel Vincent. DEMAND: a collection of
multi-channel recordings of acoustic noise in diverse environments. Version 1.0. Supported
by Inria under the Associate Team Program VERSAMUS. Zenodo, June 2013. DOI:
10.5281/zenodo.1227121. URL: https://doi.org/10.5281/zenodo.1227121.

[32] Alex Varshavsky et al. “Amigo: Proximity-Based Authentication of Mobile Devices”. In:
UbiComp 2007: Ubiquitous Computing. Ed. by John Krumm et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 253–270. ISBN: 978-3-540-74853-3.

[33] John Von Neumann. “13. various techniques used in connection with random digits”. In:
Appl. Math Ser 12.36-38 (1951), p. 5.

[34] Jack West et al. Moonshine Context-Based Authentication Harvested Data. May 2021.
DOI: 10.5281/zenodo.4579965.

[35] Jack West et al. “Moonshine: An Online Randomness Distiller for Zero-Involvement
Authentication”. In: Proceedings of the 20th International Conference on Information
Processing in Sensor Networks (co-located with CPS-IoT Week 2021). 2021, pp. 93–105.

[36] Wei Xi et al. “Instant and Robust Authentication and Key Agreement among Mobile
Devices”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. CCS ’16. Vienna, Austria: Association for Computing
Machinery, 2016, pp. 616–627. ISBN: 9781450341394. DOI: 10.1145/2976749.2978298.
URL: https://doi.org/10.1145/2976749.2978298.

[37] Lin Yang, Wei Wang, and Qian Zhang. “Secret from Muscle: Enabling Secure Pairing with
Electromyography”. In: Proceedings of the 14th ACM Conference on Embedded Network
Sensor Systems CD-ROM. SenSys ’16. Stanford, CA, USA: ACM, 2016, pp. 28–41. ISBN:
978-1-4503-4263-6. DOI: 10.1145/2994551.2994556. URL:
http://doi.acm.org/10.1145/2994551.2994556.

[38] Zhaoyang Zhang et al. “ECG-Cryptography and Authentication in Body Area Networks”.
In: IEEE Transactions on Information Technology in Biomedicine 16.6 (Nov. 2012),
pp. 1070–1078. ISSN: 1089-7771. DOI: 10.1109/TITB.2012.2206115.

https://doi.org/10.1109/TMC.2011.271
https://doi.org/10.5281/zenodo.1227121
https://doi.org/10.5281/zenodo.1227121
https://doi.org/10.5281/zenodo.4579965
https://doi.org/10.1145/2976749.2978298
https://doi.org/10.1145/2976749.2978298
https://doi.org/10.1145/2994551.2994556
http://doi.acm.org/10.1145/2994551.2994556
https://doi.org/10.1109/TITB.2012.2206115

VITA

Jack West was born to Bennett and Christina West on June 24th, 1997 in Chicago, Illinois. He

earned his Bachelors degree at Loyola University Chicago where he majored in both computer

science and mathematics. Upon graduation, he applied to the Masters program at Loyola

University Chicago to further explore computer science as an academic. He attained two first

author conference publications during his time at Loyola, one publication was during his

undergraduate degree. He won third place in the ACM graduate research competition for the

work he presented here in the thesis. West wants to continue his work at a PhD program and

hopes to become a professor of computer science.

51

	Randomness Distillation to Improve Key Quality for Context-Based Authentication Schemes
	Recommended Citation

	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	ABSTRACT
	CHAPTER ONE INTRODUCTION
	CHAPTER TWO BACKGROUND
	An Overview of the Standard Context Based Authentication Process
	A Review of the Typical Set and the Asymptotic Equipartition Property
	Entropy Rate of a Noisy Bandlimited Signal
	System Model
	Computing the Entropy Rate from the PSD
	Deterministic Signal Cases
	Calculating Entropy Rate without Directly Computing Determinants
	Measuring Shared Randomness
	Related Work

	CHAPTER THREE RANDOMNESS DISTILLATION
	Von Neumann Corrector
	Our Implementation of Moonshine
	Real Environmental Signals
	Choosing Parameters k and m

	CHAPTER FOUR EVALUATION OF MOONSHINE
	Datasets
	Subsequence Length
	Run Time
	Key Quality
	Discard Length
	Data Retention

	CHAPTER FIVE DISCUSSION
	CHAPTER SIX CONCLUSION
	APPENDIX
	Proof of Theorem 0.7.1
	Proof of Theorem 0.7.3
	Proof of Theorem 0.7.4
	VITA

