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ABSTRACT 

Breast cancer is the leading cause of cancer death for women in the US.  Many cancer 

types have significant associations with their resident microbial communities - emerging 

evidence suggests that breast cancers also interact with the local tissue-associated microbiota. 

Studies have examined the relationship between breast cancer and its microbiome, however, the 

studies varied in their approaches used to evaluate these relationships. Microbiome research 

advances rapidly and analysis pipelines and databases are updated frequently. This dynamic 

environment makes inter-study comparisons and superficial evaluations challenging as no two 

studies are using the same standards for evaluation.  

Researchers have observed the microbiota of tumor tissue, surrounding normal sites, and 

healthy breast tissue from non-cancer individuals (Hieken et al., 2016; Urbaniak et al., 2016; 

Xuan et al., 2014), but they have not been able to translate their findings into information that 

can be used for breast cancer treatment or detection nor address what affect studying different 

variable regions has in their analysis. Within the majority of these studies, comparisons of the 

tumor tissue with adjacent normal tissue has revealed differences. This project will integrate all 

available studies related to breast cancer and the mammary microbiome to 1 reassess the original 

findings in light of advances in this rapidly progressing field and 2 incorporate all the data 

available as a large meta-analysis to identify general trends and specific differences across 

patient cohorts and studies.  
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CHAPTER ONE 

INTRODUCTION 

Breast cancer is the leading cause of cancer death for women in the US (American 

Cancer Society: About Breast Cancer, n.d.). Many cancer types have significant associations 

with their resident microbial communities - emerging evidence suggests that breast cancers also 

interact with the local tissue-associated microbiota (Chan et al., 2016; Hieken et al., 2016; 

Urbaniak et al., 2016; Xuan et al., 2014). Studies have examined the relationship between breast 

cancer and its microbiome, however, the studies varied in their approaches used to evaluate these 

relationships. Microbiome research advances rapidly and analysis pipelines and databases are 

updated frequently. This dynamic environment makes inter-study comparisons and superficial 

evaluations challenging as no two studies are using the same standards for evaluation. 

Microbiome research widely uses 16S rRNA analysis to taxonomically identify bacterial 

and archaeal strains (Bukin et al., 2019). The 16S approach is widely used in microbiome 

research and has many advantages over shotgun sequencing. The 16S approach is cost effective, 

bioinformatic pipelines are available for data analysis for 16S data, and archived data are 

available for reference (Ranjan et al., 2016). Shotgun sequencing is able to identify more 

bacterial genera than 16S (Durazzi et al., 2021); however taxonomic classification and reference 

databases in shotgun metagenomics are not well-studied (Ye et al., 2019). It is known that 

taxonomic classifiers in shotgun analyses report large numbers of low-abundance taxa that are 
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false positives which lowers the precision of those estimates (Ye et al., 2019). The 16S amplicon 

approach is well-studied and cost effective where data analysis can be performed through known 

bioinformatic pipelines and there are established and well-studied taxonomic reference databases 

available for taxonomic classification such as SILVA (Pruesse et al., 2007).  

The 16S rRNA gene includes nine hypervariable regions which range from V1 to V9, and 

these have considerable sequence diversity across different bacterial communities (Chakravorty 

et al., 2007). However, each variable region exhibits different degrees of sequence diversity, so a 

single variable region cannot distinguish between all known bacteria (Chakravorty et al., 2007). 

A study analyzed breast tissue microbiota of 16 patients from Italy across eight variable regions 

from V2 to V9 where the V3 region accounted for 45% of the reads and the V4 region accounted 

for 21% of the reads (Costantini et al., 2018). However, the optimal variable region to target for 

the breast microbiome is still of debate and more research is required to further understand the 

breast microbiome. There are different taxonomic reference databases available to taxonomically 

identify bacterial and archaeal strains, such as the Greengenes (McDonald et al., 2012) and 

SILVA (Pruesse et al., 2007) reference databases. There are also differences between the 

Greengenes, SILVA, and RDP (Cole et al., 2005) taxonomic databases and of the three, SILVA 

is the largest 16S taxonomic database in size and Greengenes is the smallest with RDP in 

between (Balvočiūtė & Huson, 2017). When comparing the Greengenes and SILVA databases 

using different bioinformatic tools , the SILVA database performed better, predicted more 

accurate predictions of taxa in simulated datasets, and had higher sensitivity than the Greengenes 

database (Almeida et al., 2018). 
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Researchers have observed the microbiota of tumor tissue, surrounding normal sites, and 

healthy breast tissue from non-cancer individuals (Hieken et al., 2016; Urbaniak et al., 2016; 

Xuan et al., 2014), but they have not been able to translate their findings into information that 

can be used for breast cancer treatment or detection nor address what affect studying different 

variable regions has in their analysis. Within the majority of these studies, comparisons of the 

tumor tissue with adjacent normal tissue has revealed differences. The microbiota differ 

drastically with the malignant tissue showing an increased abundance of pro-inflammatory 

genera and a decrease in bacterial community diversity and bacterial load (Hieken et al., 2016; 

Xuan et al., 2014). The depleted bacterial diversity in the malignant tissue can be potentially 

explained by the hypoxic, inflammatory microenvironment of tumor tissue. There is a decrease 

in the bacterial load in advanced tumors, and also a reduction in the antibacterial response in the 

breast tumor tissue where more severe tumors have a lower abundance of innate immune 

receptors in breast tissue (Xuan et al., 2014). However, when evaluating the microbiota of other 

cancer types, the cancers harbor more diverse communities (Burns et al., 2015; Mira-Pascual et 

al., 2015). 

In comparisons of healthy and malignant breast tissue (Hieken et al., 2016), 

Proteobacteria and Firmicutes show increased abundance in tumor tissue (Urbaniak et al., 2016; 

Xuan et al., 2014). However, there is not a functional or clear mechanistic explanation of 

these differences nor any inkling of how this translates to potential treatment or 

improvements in diagnosis for breast cancer. Also, each study uses different bioinformatic 

methods, data formats, and variable regions further blurring the applicability of the results of 

each study to our understanding of the disease generally. The available studies (Chan et al., 
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2016; Hieken et al., 2016; Urbaniak et al., 2016) fail to address the question of what the 

microbial composition in the mammary microbiome entails for mammary health, and whether 

looking at the different variable regions in their 16S rRNA analysis has any major effects on 

their results. It is necessary to combine the findings from these studies with respect to the 

different variable regions and patient cohorts. Our study addresses these questions by conducting 

a meta-analysis of all available studies on breast tissue and the microbiome starting from the 

original raw sequencing data. 
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CHAPTER TWO 

INDIVIDUAL STUDY ANALYSES 

Introduction 

The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant 

Disease study by Hieken et al. (2016) targets the V3-V5 variable region of their 16S rRNA data. 

Their data is comprised of 98 forward and 98 reverse fastq files with a patient sample size of 33 

patients (Fig. 1A), of which there were 16 women with benign disease and 17 women with 

malignant disease. They analyzed their 16S rRNA paired-end data by implementing the IM-

TORNADO bioinformatics pipeline (Jeraldo, 2020) using the Greengenes version 13.5 reference 

database (McDonald et al., 2012). They implemented two alpha diversity measures, two beta 

diversity measures, and performed differential abundance analysis to identify significant taxa. 

The tissues of interest are buccal swab, skin swab, breast tissue, and breast skin tissue, which is 

also referred to as skin tissue in the paper. This paper did not perform multiple correction and 

reported unadjusted p-values. 

Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors 

study by Chan et al. (2016) targets the V4 variable region of their 16S rRNA data. Their data is 

comprised of 137 forward and 137 reverse fastq files with a patient sample size of 48 patients 

(Fig. 1B), of which there were 23 healthy control women and 25 women with a history of cancer 

samples. They analyzed their 16S rRNA paired-end data by implementing the Schloss MiSeq 

standard operating procedure in mothur (Schloss et al., 2009) using the SILVA version 119
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reference database (Pruesse et al., 2007). They implemented an alpha diversity measure, a beta 

diversity measure, and performed differential abundance analysis to identify significant taxa.

There are healthy control and women with a history of breast cancer samples and tissues of 

interest are NAF, NS, and PBS in this paper. The women with a history of breast cancer are also 

referred to as cancer samples in this section. This paper did not apply false discovery correction 

when comparing the OTU relative abundances, but they did apply multiple test correction when 

performing functional prediction with PICRUST (Langille et al., 2013) and KEGG (Kanehisa & 

Goto, 2000). The OTU table was rarefied for calculating dissimilarity measures and PCoA to 

account for any bias from uneven sequencing depth. 

The Microbiota of Breast Tissue and Its Association with Breast Cancer study by 

Urbaniak et al. (2016) targets the V6 variable region of their 16S rRNA data. Their data is 

comprised of 68 merged fastq files with a patient sample size of 71 patients (Fig. 1C), of which 

there were 13 benign, 45 cancerous, and 23 healthy samples. They analyzed their 16S rRNA 

paired-end data by clustering the reads into OTUs by 97% identity using Uclust of USEARCH 

version 7 (Edgar, 2010) where taxonomy for each OTU was assigned using the SILVA reference 

database (Pruesse et al., 2007), manually verified using the RDP Seqmatch Tool (Sequence 

Match, n.d.), and further verified by using BLAST (Altschul et al., 1990) against the Greengenes 

database (McDonald et al., 2012) where the highest percent identity and coverage hit was 

assigned as taxonomy. They measured a weighted UniFrac distance, implemented unsupervised 

K-means clustering of CLR-transformed data, and identified significantly increased abundant 

taxa through the ALDEx2 package in R (Gloor et al., 2022). The samples of interest are 

malignant, benign, and healthy samples from breast tissue in this paper, where the samples are 
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normal adjacent tissue from women with breast cancer which is either benign or malignant and 

tissue from healthy controls. This paper applied the Benjamini-Hochberg correction and reported 

the Benjamini-Hochberg corrected p-values of the Wilcoxon rank test when running ALDEx2. 

 

  

Figure 1. Overview of the studies of interest. 

(A) Hieken study overview outlining their patient sample size, number of samples, 

sequencing technology and variable region, bioinformatics pipeline and taxonomic 

reference database, and downstream analyses. (B) Chan study overview outlining their 

patient sample size, number of samples, sequencing technology and variable region, 

bioinformatics pipeline and taxonomic reference database, and downstream analyses. 

(C) Urbaniak study overview outlining their patient sample size, number of samples, 

sequencing technology and variable region, bioinformatics pipeline and taxonomic 

reference database, and downstream analyses. 
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Methods 

Hieken 

Dataset overview. The study The Microbiome of Aseptically Collected Human Breast 

Tissue in Benign and Malignant Disease by Hieken et al. in August 2016, compares the 

microbial communities between malignant and benign tumors of patients with breast cancer, 

using normal adjacent tissues as controls. The Hieken et al. breast microbial data comprises 98 

forward fastq files and 98 reverse fastq files for a total of 196 fastq files of which there are 98 

samples across 33 distinct patients. The sequencing data for this study is available from the 

NCBI SRA (Sequence Read Archive (SRA), n.d.) and was downloaded from the SRA with 

accession number PRJNA335375, using the SRA explore interface at sra-explorer.info (Ewels et 

al., n.d.). The samples were collected from 33 patients with either cancer or benign disease. In 

this study, the IM-TORNADO bioinformatics pipeline (Jeraldo, 2020) was implemented to 

conduct analyses on the paired-end data along with the Greengenes reference database version 

13.5 (McDonald et al., 2012) for assigning taxonomy. Furthermore, there were two alpha 

diversity measures implemented, one was the observed OTU number which reflects the species 

richness and second the Shannon index which reflects the species evenness. There were two beta 

diversity measures implemented as well which were the unweighted and weighted UniFrac 

distances (Lozupone & Knight, 2005), and these diversity measures were calculated using an 

OTU table and phylogenetic tree. The unweighted UniFrac (Lozupone et al., 2011) measures 

differences in community presence such as whether or not there is an OTU present, and the 

weighted UniFrac measures differences in community abundance.  
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Preprocessing. Prior to beginning denoising, the primers used to amplify the V3-V5 

regions of the 16S rRNA gene were trimmed from the unzipped paired end fastq files using 

cutadapt version 1.15 (Martin, 2011). The following shell commands were used to trim the 

primers 357F and 926R found in the Hieken study. The 357F primer used was 

AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTCCTACGGGAGGCAGC

AG and the 926R primer used was 

CAAGCAGAAGACGGCATACGAGATGCCGCATTCGATXXXXXXXXXXXXCCGTCAAT

TCMTTTRAGT. 

After trimming the primers, FastQC version 0.11.5 (Babraham Bioinformatics - FastQC A 

Quality Control Tool for High Throughput Sequence Data, n.d.) was used to assess the Phred 

quality score of each forward and reverse fastq file as well as to check for potential artifactual 

sequences in the dataset. 

DADA2 Pipeline Analysis. The trimmed fastq files were denoised by implementing the 

DADA2 version 1.16 pipeline (DADA2 1.16 Pipeline, n.d.) using the dada2 R package (B. 

Callahan et al., 2022). The trimmed reverse fastq files were of very low quality and few of them 

made it through the quality control steps within the pipeline; therefore, only forward fastq files 

were included in the analysis, as these reads met our quality control standards. The trimmed 

forward fastq files were analyzed using default parameters in the DADA2 1.16 pipeline (DADA2 

1.16 Pipeline, n.d.), with changes in the filterAndTrim command, makeSequenceTable 

command, and the mergers command. In the filterAndTrim command, the reverse file input and 

truncLen parameter were removed and the maxEE value was adjusted from the default maxEE = 

c(2,2) to maxEE = 3. These changes were implemented to allow for flexibility and to relax the 
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stringency in our analysis so to prevent massive removal of sample reads which would make 

interpretation of the results impossible. Also, the multithread parameter was set to equal two to 

avoid memory issues. In the makeSequenceTable command, the dadaFs variable was used to 

make the seqtab variable instead of the default mergers variable. The mergers command was 

removed as the analysis was performed with only the forward fastq files as input. Additionally, 

the SILVA version 138 reference database (Pruesse et al., 2007) compatible with DADA2 (B. J. 

Callahan et al., 2016) was downloaded from the Zenodo site (McLaren & Callahan, 2021). The 

tax_glom and transform_sample_counts functions in phyloseq were implemented to make the 

proportional abundance plots. Additionally, the microshades package was used to make 

colorblind friendly proportional abundance plots and the code can be found at the microshades 

website (A Custom Color Palette for Improving Data Visualization, n.d.). In order to make the 

microshades plot, the phyloseq object is used as input to the prep_mdf function. After making 

the proportional abundance plots, phylogenetic analysis was performed and UniFrac distances 

(Lozupone & Knight, 2005) were calculated using GUniFrac (Chen et al., 2022). 

Phylogenetic Analysis. The phylogenetic code was adapted from the compbiocore 

github site (Computational Biology Core - Brown University, n.d.), specifically commands from 

sequences<-getSequences(seqtab.nochim) up to dm <- dist.ml(phang.align) were implemented. 

The tree was generated using dm as input to the upgma command from the phangorn R package 

(Schliep et al., 2021). The ASV table and taxonomy table outputs from DADA2 along with the 

metadata and phylogenetic tree files were used as input to the MicrobiomeAnalyst web interface 

(Dhariwal et al., 2017) for visual exploratory data analysis. 
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Statistical Analysis. In order to calculate the UniFrac distances (Lozupone & Knight, 

2005), the GUniFrac function from the GUniFrac R package (Chen et al., 2022) was 

implemented where the input was the ASV table output from the DADA2 analysis. The 

unweighted UniFrac (Lozupone et al., 2011) beta diversity ordination plots were generated 

through principal coordinate analysis using the cmdscale function from the vegan package (Jari 

Oksanen et al., 2022). Then, in order to identify differentially abundant taxa, the taxa with 

prevalence of less than 10% and relative abundance of less than 0.2% were filtered out. The 

prevalence filtering step was performed by filtering out ASVs that have more than 90% of their 

sample values as zeros. The relative abundance filtering step was performed by first modifying 

the ASV table so that it has proportional counts, and this was completed through total sum 

scaling of the ASV table. Then, ASVs that had a maximum proportional count of less than 0.002 

(0.2%) were filtered out, and after this filtering step this taxa proportional data was square-root 

transformed for the permutation test. The ASV table was transposed so that the ASVs were the 

row names, and p values were calculated for the ASVs through the permutation test. The 

permutation test was performed using the linda function in the GUniFrac library (Chen et al., 

2022), and the proportional, square-root transformed, and transposed ASV table was used as 

input. The significant ASVs were then graphed in the form of bar plots. 

Urbaniak 

Dataset overview. The study The Microbiota of Breast Tissue and Its Association with 

Breast Cancer by Urbaniak et al. in August 2016, compares the microbial composition between 

breast tissue from healthy control women and normal adjacent breast tissue from women with 

breast cancer, and they also compare normal adjacent breast tissue and breast tumor tissue. The 
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Urbaniak et al. breast microbial data comprises 68 merged fastq files across 71 women where 13 

were benign tumors, 45 were cancerous tumors, and 23 were healthy control women. The 

sequencing data for this study is available from the NCBI SRA (Sequence Read Archive (SRA), 

n.d.) and was downloaded from the SRA with accession number SRP076038, using the SRA 

explore interface at sra-explorer.info (Ewels et al., n.d.). 

In this study, the Uclust algorithm within USEARCH version 7 (Edgar, 2010) was used 

to cluster reads by 97% identity into OTUs. Taxonomic assignment of each OTU was made by 

extracting best hits from SILVA database (Pruesse et al., 2007), manually verifying using 

Ribosomal Database Project (RDP) SeqMatch tool (Cole et al., 2005), and then using BLAST 

(Altschul et al., 1990) against the Greengenes database (McDonald et al., 2012), where the hits 

with the highest percent identity and coverage were used to assign taxonomy. OTU sequences 

were aligned using MUSCLE (Edgar, 2004) and were inputted to FASTTREE (Price et al., 2009) 

to build a tree of OTU sequences where PCoA plots of weighted UniFrac distances (Lozupone et 

al., 2011) were made in QIIME (Caporaso et al., 2010) using this tree of OTU sequences. 

Additionally, because microbiome data are compositional, k-means clustering was performed 

using euclidean distances of center-log ratio (CLR) transformed data. The ALDEx2 R package 

(Gloor et al., 2022) was used to measure the relative abundances of genera where Benjamini-

Hochberg corrected p-value of the Wilcoxon rank test was used to test for significance. 

Furthermore, to test for differences between microbiota a microbiome regression-based kernel 

association test (mirkat) was performed in R using the MiRKAT package (Zhao et al., 2015) 

where a kernel metric was built using UniFrac distances and Bray-Curtis dissimilarity metric. 

UniFrac distances and Bray-Curtis dissimilarity metric were both used in the kernel metric 
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simultaneously as MiRKAT allows for multiple distance or dissimilarity metrics to be used at the 

same time. 

Preprocessing. Upon downloading the fastq files from the SRA (Sequence Read Archive 

(SRA), n.d.), the files were already merged and pre-processed. 

DADA2 Pipeline Analysis. The trimmed fastq files were denoised by implementing the 

DADA2 version 1.16 pipeline (DADA2 1.16 Pipeline, n.d.) using the dada2 R package (B. 

Callahan et al., 2022). The merged fastq files were analyzed using default parameters in the 

DADA2 1.16 pipeline (DADA2 1.16 Pipeline, n.d.), with changes in the filterAndTrim 

command, makeSequenceTable command, and the mergers command. In the filterAndTrim 

command, the reverse file input and truncLen parameter were removed and the maxEE value 

was adjusted from the default maxEE = c(2,2) to maxEE = 3. These changes were implemented 

to allow for flexibility and to relax the stringency in our analysis so to prevent massive removal 

of sample reads which would make interpretation of the results impossible. In the 

makeSequenceTable command, the dadaFs variable was used to make the seqtab variable instead 

of the default mergers variable. The mergers command was removed as the analysis was 

performed with merged fastq files as input. Additionally, the SILVA version 138 reference 

database compatible with DADA2 was downloaded from the Zenodo site (McLaren & Callahan, 

2021). The tax_glom and transform_sample_counts functions in phyloseq were implemented to 

make the proportional abundance plots. Additionally, the microshades package was used to make 

colorblind friendly proportional abundance plots and the code can be found at the microshades 

website (A Custom Color Palette for Improving Data Visualization, n.d.). In order to make the 

microshades plot, the phyloseq object is used as input to the prep_mdf function. After making 
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the proportional abundance plots, phylogenetic analysis was performed and UniFrac distances 

(Lozupone & Knight, 2005) were calculated using GUniFrac (Chen et al., 2022). 

Phylogenetic Analysis. The phylogenetic code is adapted from the compbiocore github 

site (Computational Biology Core - Brown University, n.d.), specifically commands from 

sequences<-getSequences(seqtab.nochim) upto dm <- dist.ml(phang.align) are implemented. The 

tree is generated using dm as input to the upgma command from the phangorn R package 

(Schliep et al., 2021). The ASV table and taxonomy table outputs from DADA2 along with the 

metadata and phylogenetic tree files were used as input to the MicrobiomeAnalyst web interface 

(Dhariwal et al., 2017) for visual exploratory data analysis. 

Statistical Analysis. In order to calculate the UniFrac distances (Lozupone & Knight, 

2005), the GUniFrac function from the GUniFrac R package (Chen et al., 2022) was 

implemented where the input was the ASV table output from the DADA2 analysis. The 

unweighted and weighted UniFrac (Lozupone et al., 2011) beta diversity cluster plots were 

generated through the pam and clusplot functions from the cluster package (Rousseeuw et al., 

2022). The Bray-Curtis beta diversity distance was calculated through the vegdist function from 

the vegan package (Jari Oksanen et al., 2022), and the beta diversity cluster plots were generated 

through the pam and clusplot functions from the cluster package (Rousseeuw et al., 2022). The 

pam function was used to perform K-Means Clustering and the clusplot function was used to 

visualize the results. The ALDEx2 R package (Gloor et al., 2022) was used to measure the 

relative abundances of statistically significant genera where ASVs in the ALDEx2 output were 

used to link associated genera to the output. Each genus in the output was visualized in the form 

of a box plot. 
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Chan 

Dataset overview. The study Characterization of the microbiome of nipple aspirate fluid 

of breast cancer survivors by Chan et al. in June 2016, investigates the microbial community 

present in nipple aspirate fluid and their potential association with breast cancer by comparing 

NAF between healthy control samples and women with history of breast cancer samples. The 

Chan et al. microbial data comprises 137 forward fastq files and 137 reverse fastq files for a total 

of 274 fastq files of which there are 137 samples across 48 distinct patients. The sequencing data 

for this study is available from the NCBI SRA (Sequence Read Archive (SRA), n.d.) and was 

downloaded from the SRA with accession number PRJNA314877, using the SRA explore 

interface at sra-explorer.info (Ewels et al., n.d.). The samples were collected from 48 patients 

with 23 healthy control women and 25 women with a history of breast cancer.  

In this study, the Schloss MiSeq SOP (MiSeq SOP, n.d.) was implemented using mothur 

(Schloss et al., 2009) to conduct sequence processing on the paired-end data along with SILVA 

reference database version 119 (Pruesse et al., 2007) for assigning taxonomy. Additionally, 

OTUs detected in empty control Eppendorf tubes were removed to account for contaminating 

microbial 16S rDNA sequences from extraction kits and reagents. Furthermore, Bray-Curtis 

dissimilarity was implemented for PCoA using rarefied OTU abundances. Analysis of variance 

(Adonis) was used to measure community composition differences and a nonparametric Kruskal-

Wallis test was used to test whether the OTU relative abundances were statistically significant 

between the healthy control and breast cancer samples for NAF, NS, and PBS samples. A paired 

Wilcoxon signed-rank test was implemented to compare the OTU abundances between NAF and 

NS samples from the same patients. Additionally, a paired two-tailed t-test was used to compare 
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the microbial composition between paired NAF and nipple skin samples. The statistical analyses 

used a p-value cutoff of 0.05 and false discovery rate correction was not implemented for OTU 

relative abundance comparison. 

Preprocessing. Prior to beginning denoising, the primers used to amplify the V4 region 

of the 16S rRNA gene were trimmed from the unzipped paired end fastq files using cutadapt 

version 1.15 (Martin, 2011). The following shell commands were used to trim the primers F515 

and R806. The F515 primer used was 

AATGATACGGCGACCACCGAGACGTACGTACGGTGTGCCAGCMGCCGCGGTAA and 

the R806 primer used was 

CAAGCAGAAGACGGCATACGAGATXXXXXXXXXXXXACGTACGTACCGGATACHV

GGGTWTCTAAT. After trimming the primers, FastQC version 0.11.5 (Babraham 

Bioinformatics - FastQC A Quality Control Tool for High Throughput Sequence Data, n.d.) was 

used to assess the Phred quality score of each forward and reverse fastq file as well as to check 

for potential artifactual sequences in the dataset. 

DADA2 Pipeline Analysis. The trimmed fastq files were denoised by implementing the 

DADA2 version 1.16 pipeline (DADA2 1.16 Pipeline, n.d.) using the dada2 R package (B. 

Callahan et al., 2022). The trimmed reverse fastq files were of very low quality and few of them 

made it through the quality control steps within the pipeline; therefore, only forward fastq files 

were included in the analysis, as these reads met our quality control standards. The trimmed 

forward fastq files were analyzed using default parameters in the DADA2 1.16 pipeline (DADA2 

1.16 Pipeline, n.d.), with changes in the filterAndTrim command, makeSequenceTable 

command, and the mergers command. In the filterAndTrim command, the reverse file input and 
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truncLen parameter were removed and the maxEE value was adjusted from the default maxEE = 

c(2,2) to maxEE = 3. These changes were implemented to allow for flexibility and to relax the 

stringency in our analysis so as to prevent massive removal of sample reads which would make 

interpretation of the results impossible. Also, the multithread parameter was set to equal two to 

avoid memory issues. In the makeSequenceTable command, the dadaFs variable was used to 

make the seqtab variable instead of the default mergers variable. The mergers command was 

removed as the analysis was performed with only the forward fastq files as input. Additionally, 

the SILVA version 138 reference database (Pruesse et al., 2007) compatible with DADA2 was 

downloaded from the Zenodo site (McLaren & Callahan, 2021). The tax_glom and 

transform_sample_counts functions in phyloseq were implemented to make the proportional 

abundance plots. Additionally, the microshades package was used to make colorblind friendly 

proportional abundance plots and the code can be found at the microshades website (A Custom 

Color Palette for Improving Data Visualization, n.d.). In order to make the microshades plot, the 

phyloseq object was used as input to the prep_mdf function. After making the proportional 

abundance plots, phylogenetic analysis was performed and UniFrac distances (Lozupone & 

Knight, 2005) were calculated. 

Phylogenetic Analysis. The phylogenetic code is adapted from the compbiocore github 

site (Computational Biology Core - Brown University, n.d.), specifically commands from 

sequences <- getSequences(seqtab.nochim) upto dm <- dist.ml(phang.align) are implemented. 

The tree is generated using dm as input to the upgma command from the phangorn R package 

(Schliep et al., 2021). The ASV table and taxonomy table outputs from DADA2 along with the 
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metadata and phylogenetic tree files were used as input to the MicrobiomeAnalyst web interface 

(Dhariwal et al., 2017) for visual exploratory data analysis. 

 Statistical Analysis. The Adonis test was run to measure community composition 

differences and a nonparametric Kruskal-Wallis test was run to test whether the OTU relative 

abundances were statistically significant between the healthy control and breast cancer samples 

for NAF, NS, and PBS samples. The p-values reported for the Adonis and Kruskal-Wallis tests 

are unadjusted p-values as the Chan study also reported unadjusted p-values. In order to perform 

the Adonis test, the distance function in phyloseq (McMurdie & Holmes, 2013) was run to 

calculate Bray-Curtis distance with a proportionally rarefied phyloseq object as input. The 

calculated distance and its associated sample metadata were used as input to the adonis function 

from the vegan package (Jari Oksanen et al., 2022). The Kruskal-Wallis test was then run for 

each ASV from a rarefied phyloseq object, and ASVs that are not significant are filtered out. The 

significant ASVs were then linked with their associated taxa and the abundance values for each 

taxon was visualized through a dot plot. 

Results 

Hieken et al. Original Study Results 

The figures reported in this section are from the original Hieken et al. paper, unless 

specified otherwise. 

 Alpha Diversity. In the alpha diversity analysis, they used observed OTU number which 

shows species richness and the Shannon index which shows species evenness. When comparing 

breast and skin tissue, the observed OTU number revealed that there were more bacterial species 

richness in breast tissue than skin tissue (Fig. 2A), whereas the species evenness through the 
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Shannon Index were similar between the breast and skin tissue (Fig. 2B). To further explore the 

increased species richness of the breast tissue, a heat map visualizes species richness between the 

skin and breast tissue where more OTUs are observed for the breast tissue and these OTUs in 

breast tissue are mostly of low abundance (Fig. 2C). 

 

 

 

A B 

C Figure 2. Original study comparison 

between breast and skin tissue. 

(A, B) Rarefaction curves comparing 

the observed OTU number and 

Shannon Index in breast and skin 

tissue samples. (C) Heat map that 

shows presence or absence of OTUs 

of breast and skin tissues where 

columns are samples and rows are 

OTUs. Clustering is based on 

Euclidean distances of presence or 

absence of OTUs with complete 

linkage. 
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Beta Diversity. In the beta diversity analysis, they used weighted and unweighted 

UniFrac distances which were calculated through the GUniFrac package in R (Chen et al., 2022) 

with the OTU table and phylogenetic tree as input. Prior to alpha and beta diversity analyses, the 

OTU table was rarefied to a sequencing depth of 20,000 sequences to reduce confounding 

effects. They performed MiRKAT (Zhao et al., 2015) and calculated p-values to identify the 

association between the two beta diversity measures. Beta diversity analysis was performed to 

compare breast and skin tissue microbiota, where the unweighted UniFrac distance showed a 

significant difference in microbial community between breast and skin tissue (Fig. 3A) and 

reported a MiRKAT p-value of 0.0001. However, the weighted UniFrac distance did not show a 

significant difference between breast and skin tissue (Fig. 3B) and reported a MiRKAT p-value 

of 0.14. To ascertain that the significant difference was not due to differential sequencing depth 

between the breast and skin tissue, they performed rarefaction and adjusted the sequencing depth 

A B 

Figure 3. Original study comparison of microbiota of breast and skin tissue. 

(A) Unweighted UniFrac ordination plot showing clustering of the two tissues.  

(B) Weighted UniFrac ordination plot showing clustering of the two tissues. 
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in the model. Rarefaction and adjustment to sequencing depth did not change the statistical 

significance found in the alpha and beta diversity results.  

Also, they compared the microbial community between breast tissue adjacent to invasive 

cancer disease and breast tissue adjacent to benign disease using the unweighted and weighted 

UniFrac distances and reported the associated p-values from MiRKAT. The unweighted UniFrac 

distance showed that the microbial community differed significantly between breast tissue 

adjacent to cancer disease state and breast tissue adjacent to benign disease state (Fig. 4) with a 

MiRKAT p-value of 0.009. However, the weighted UniFrac distance showed that the difference 

is not significant in the microbial community between breast tissue adjacent to cancer disease 

state and breast tissue adjacent to benign disease state. They state that the differences found in 

Figure 4. Original study ordination plot of unweighted UniFrac distance metric. 

Unweighted UniFrac distance ordination plot showing the clustering of breast tissue 

microbiota between BBD_non_atypia and InvCa samples. 
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the unweighted UniFrac analysis are mainly in the rare or less abundant lineages. Additionally, 

they perform PCoA on the unweighted UniFrac distances and showed that the microbiome of the 

different tissue types – buccal swab, skin swab, breast tissue, and skin tissue – cluster distinctly 

from one another. The buccal swab and skin swab microbiota clearly separate from each other 

and the other two tissues, and the skin and breast tissue microbiota are closer in space but are 

also separate from each other. 

Proportional Abundance Analysis. In the proportional abundance analysis, they 

assessed the taxonomic composition of breast and skin tissue microbiota at phylum, family, and 

genus levels. They report that these taxonomic plots show similar abundance in the major taxa 

between the breast and skin tissue (Fig. 7A) and the associated taxa are shown in the 

supplementary material. Additionally, they assess the taxonomic composition of breast tissue 

microbiota between benign and malignant disease states (Fig. 8A) and of buccal and skin swab 

microbiota at the phylum, family, and genus levels (Fig. 9A). These plots are located in the 

supplementary materials. The plots in the supplementary material are provided here for 

reference. 

Differential Abundance Analysis. In the differential abundance analysis, they filtered 

out taxa with prevalence of less than 10% and relative abundance of less than 0.2%. In order to 

identify the differentially abundant taxa, they implemented a permutation test where they fitted a 

regular linear model and taxa proportion data was the outcome variable. To assess statistical 

significance, they used 1,000 permutations and F-stat as the test statistic and reported unadjusted 

p-values. Based on this permutation test, they identified differentially abundant taxa between the 

breast and skin tissue from the following phyla groups Firmicutes, Actinobacteria, Bacteroidetes, 
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and Proteobacteria. The low-abundant differential taxa were also identified from the permutation 

test with an unadjusted p-value less than 0.05 where they used a permutation test to assess the 

differential taxa in breast tissue microbiota between benign and malignant disease states. 

Through this permutation test, they found that there is an increased relative abundance of low-

abundant genera in the invasive cancer breast tissue. The low-abundant genera were 

Fusobacterium, Atopobium, Hydrogenophaga, Gluconacetobacter, and Lactobacillus with an 

unadjusted p-value less than 0.05. Barplots further confirm the abundances of the five 

differential genera between the benign and malignant disease states in breast tissue (Fig. 5). 

 

 

 

 

 

 

Hieken et al. Re-analysis Results 

The figures reported in this section are from our results of the re-analysis of the Hieken et 

al. paper. 

 Alpha Diversity. In the alpha diversity analysis, we have used the observed OTU 

number and Shannon Index to look at breast and skin tissue microbiota. The observed OTU 

number shows difference between the two tissues with an increased abundance of breast tissue 

OTUs than skin tissue OTUs as shown through the observed OTU number scatter plot and box 

plot (Fig. 6A). However, the Shannon Index does not show this difference as shown through the 

Figure 5. Original Study Differentially abundant genera present in breast tissue microbiota. 

These genera are abundant in InvCa in breast tissue and are low-abundant genera. P-values 

are unadjusted. 
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Shannon scatter plot and box plot (Fig. 6B), and the heatmap also does not show a difference 

between the breast and skin OTU abundance (Fig. 6C).  
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Figure 6. Comparison of breast 

and skin tissue microbiota. 

(A) The observed OTU number 

alpha diversity measure 

comparing microbiota of breast 

and skin tissue through a scatter 

plot and box plot. (B) The 

Shannon Index alpha diversity 

measure comparing microbiota 

of breast and skin tissue through 

a scatter plot and box plot. (C) 

Heatmap showing the OTU 

prevalence of breast (dark blue) 

and skin (light blue) tissues 

(columns: samples, rows: 

OTUs). 



  

 

25 

Beta Diversity. In the beta diversity analysis, we have used weighted and unweighted 

UniFrac distances which were calculated through the GUniFrac package in R (Chen et al., 2022) 

with the OTU table and phylogenetic tree as input. Prior to alpha and beta diversity analyses, the 

OTU table was rarefied to reduce confounding effects. Beta diversity analysis was performed to 

compare breast and skin tissue microbiota, where the unweighted UniFrac distance and weighted 

UniFrac distance did not show a significant difference in microbial community between breast 

and skin tissue and the MiRKAT p-values for both unweighted and weighted UniFrac were not 

significant (p > 0.05) (Fig. 7A; Fig. 7B). The microbial community between breast tissue 

adjacent to invasive cancer disease and breast tissue adjacent to benign disease were also 

compared using the unweighted and weighted UniFrac distances (Fig. 7C). The unweighted 

UniFrac distance and weighted UniFrac distance did not show a significant difference in the 

microbial community between breast tissue adjacent to cancer disease state and breast tissue 

adjacent to benign disease state and the MiRKAT p-values for both unweighted and weighted 

UniFrac were not significant (p > 0.05). Additionally, PCoA was performed on the unweighted 

UniFrac distances and showed that the microbiome of the different tissue types – buccal swab, 

skin swab, breast tissue, and skin tissue – cluster separately from one another (Fig. 7D). The 

buccal swab and skin swab microbiota clearly separate from each other and the other two tissues, 

and the skin and breast tissue microbiota are closer in space but also cluster separate from each 

other.  
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  A B 

C 
D 

Figure 7. Comparing microbiota of tissues and types of cancers.  

(A) Unweighted UniFrac distance plot showing clustering of breast (red) and skin (blue) 

tissues. (B) Weighted UniFrac distance plot showing clustering of breast (red) and skin 

(blue) tissues. (C) Unweighted UniFrac distance plot showing clustering of breast tissue 

microbiota between benign (BBD_non_atypia) and cancer (InvCa) states. (D) PCoA plot 

of unweighted UniFrac distance showing clustering of all 4 tissues where the color 

scheme is breast tissue (red), skin tissue (purple), skin swab (blue), and buccal 

swab/cells (green). 
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Proportional Abundance Analysis. In the proportional abundance analysis, we have 

assessed the taxonomic composition of breast and skin tissue microbiota, breast tissue microbiota 

in benign, also known as BBD_non_atypia, and invasive cancer, also known as InvCa, disease 

states, and buccal and skin swab microbiota at phylum, family, and genus levels. The 

proportional abundance plots include the top 100 sequences in order to clearly show the taxa 

present at the phylum, family, and genus levels. The breast and skin tissue show similar 

abundances of major taxa from phyla Actinobacteriota, Bacteroidota, Firmicutes, and 

Proteobacteria; however, the skin tissue also shows taxa from the phylum Fusobacteriota (Fig. 

8B). The breast tissue microbiota in benign and invasive cancer disease states show similar 

abundances of taxa from phyla Actinobacteriota, Bacteroidota, Firmicutes, and Proteobacteria; 

however, the invasive cancer disease state shows a low abundance of phylum Spirochaetota (Fig. 

9B). The buccal and skin swab show similar abundances of taxa from phyla Actinobacteriota, 

Bacteroidota, Firmicutes, and Proteobacteria with Fusobacteriota found only in the skin swab 

(Fig. 10B). At the genus level, there are clearer differences in taxonomic composition between 

the buccal and skin swab microbiota. The buccal swab microbiota shows a greater abundance of 
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Veillonella and Streptococcus, whereas the skin swab microbiota shows a greater abundance of 

Staphylococcus and Escherichia-Shigella. 

 

  

A 

B 

Figure 8. Proportional abundance barplots of taxonomic profiles of breast and skin tissue 

microbiota. 

(A) Proportional abundance barplots from the original Hieken study showing taxonomic 

composition of breast and skin tissue microbiota at the phylum, family, and genus levels. 

(B) Proportional abundance barplots generated from our DADA2 analysis of the Hieken 

data showing taxonomic composition of breast and skin tissue microbiota at the phylum, 

family, and genus levels. 
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A 

B 

Figure 9. Proportional abundance barplots of taxonomic profiles of breast tissue 

microbiota between BBD_non_atypia and InvCa samples. 

(A) Proportional abundance barplots from the original Hieken study showing taxonomic 

composition of BBD_non_atypia and InvCa samples from breast tissue at the phylum, 

family, and genus levels. (B) Proportional abundance barplots generated from our 

DADA2 analysis of the Hieken data showing taxonomic composition of BBD_non_atypia 

and InvCa samples from breast tissue at the phylum, family, and genus levels. 
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A 

B 

Figure 10. Proportional abundance barplots of taxonomic profiles of buccal swab and 

skin swab microbiota. 

(A) Proportional abundance barplots from the original Hieken study showing 

taxonomic composition of buccal swab and skin swab microbiota at the phylum, family, 

and genus levels. (B) Proportional abundance barplots generated from our DADA2 

analysis of the Hieken data showing taxonomic composition of buccal swab and skin 

swab microbiota at the phylum, family, and genus levels. 



  

 

31 

Differential Abundance Analysis. In the differential abundance analysis, taxa with 

prevalence of less than 10% and relative abundance of less than 0.2% were filtered out. In order 

to identify the differentially abundant taxa, we implemented a linear (lin) model for differential 

abundance (da) called linda which fits linear regression models on high dimensional data (Zhou 

et al., 2022) and the linda tool is in the MicrobiomeStat package in R (Zhang et al., 2022). Based 

on this permutation test, there were twelve significant differentially abundant taxa identified in 

breast tissue microbiota in benign and invasive cancer disease states. These twelve significant 

differential taxa were Eubacterium xylanophilum group, ASF356, Atopobium, Bacteroides, 

Clostridia UCG-014, Colidextribacter, Escherichia-Shigella, Lachnospiraceae NK4A136 group, 

Rikenellaceae RC9 gut group, Staphylococcus, Subdoligranulum, and Veillonella where the 

reported p-values were unadjusted for false discovery correction. The barplots further confirm 

the abundances of the twelve differential taxa between the benign and malignant disease states in 

breast tissue (Fig. 11).  

 

 

Figure 11. Differentially 

abundant taxa in breast 

tissue microbiota of 

benign and malignant 

disease states. 

Differential taxa in breast 

tissue microbiota of 

benign 

(BBD_non_atypia) and 

malignant disease states 

based on the linda model. 
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Chan et al. Original Study Results 

The figures reported in this section are from the original Chan et al. paper. 

Alpha Diversity. In the alpha diversity analysis, they used observed OTU numbers with 

ten permutations of random sampling at each sequencing depth. They compared the healthy 

control and cancer samples from NS, NAF, and PBS samples, and performed non-parametric t-

tests. When comparing the healthy control and cancer samples from the NS microbiome, the 

observed OTUs as a function of sequencing depth were assessed by diversity rarefaction curves 

and the difference in diversity assessed by the non-parametric t-test was not significant with an 

unadjusted p-value of 0.929 (Fig. 12A). When comparing the healthy control and cancer samples 

from the NAF microbiota, the observed OTUs as a function of sequencing depth were assessed 

by diversity rarefaction curves and the difference in diversity assessed by the non-parametric t-

test was not significant with an unadjusted p-value of 0.65 (Fig. 12B). When comparing the 

healthy control and cancer samples from the PBS microbiota, the observed OTUs as a function 

of sequencing depth were assessed by diversity rarefaction curves and the difference in diversity 

assessed by the non-parametric t-test was not significant with an unadjusted p-value of 0.151 

(Fig. 12C). 
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A B 

C 

Figure 12. Original Study Alpha Diversity: Observed OTU number. 

Alpha diversity rarefaction curves where number of OTUs observed is on x-axis 

and sequencing depth is on y-axis. (A) NS microbiota composition. (B) NAF 

microbiota composition. (C) PBS microbiota composition. 
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Beta Diversity. In the beta diversity analysis, they implemented a Bray-Curtis 

dissimilarity metric and performed PCoA using the rarefied OTU abundances as input where the 

genus-level OTUs were used in PCoA. The Adonis test was used to test for compositional 

differences, and the adonis function in the vegan package (Oksanen et al., 2022) from R was 

used to implement this test. The healthy control and cancer samples from the NS microbiota did 

not form separate clusters and when running the Adonis test there were no significant differences 

found in the bacterial composition with an unadjusted p-value of 0.945 (Fig. 13B). The healthy 

control and cancer samples from the NAF microbiota formed separate clusters and when running 

the Adonis test there was a significant difference in the bacterial composition with an unadjusted 

p-value of 0.002 (Fig. 13A). They deduced that the Adonis test indicates that having had a 

history of breast cancer significantly affects the NAF microbiota and explains 13.5% of 

variability between the samples. The healthy control and cancer samples from the PBS 

microbiota did not form separate clusters and when running the Adonis test there were no 

significant differences found in the bacterial composition with an unadjusted p-value of 0.478 

(Fig. 13C). 

A B C 

Figure 13. Original Study Adonis test: compositional differences. 

(A) NAF microbiota. (B) NS microbiota. (C) PBS microbiota. 
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Proportional Abundance Analysis. In the proportional abundance analysis, they 

assessed the taxonomic composition of NS, NAF, and PBS microbiota at the phylum level. The 

NS microbial composition was predominantly comprised of the phyla Proteobacteria, Firmicutes, 

and Bacteroidetes (Fig. 14A). At the genus level, they reported that Alistipes was the most 

abundant OTU in the nipple skin samples. The PBS microbial composition was predominantly 

comprised of the phyla Proteobacteria, Firmicutes, and Bacteroidetes (Fig. 14B). The NAF 

microbial composition was predominantly comprised of the phyla Firmicutes, Proteobacteria, 

and Bacteroidetes (Fig. 14C). 

 

A B 

C 
Figure 14. Original Study Proportional 

abundance at the phylum level. 

(A) NS microbiota. (B) PBS 

microbiota. (C) NAF microbiota. 
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Differential Abundance Analysis. In the differential abundance analysis, the Kruskal-

Wallis test (Kruskal and Wallis, 1952) was performed on the healthy and cancer samples from 

NS, NAF, and PBS OTUs. The NS OTUs were not significantly different when comparing the 

healthy and cancer samples through the Kruskal-Wallis test. There were two NAF OTUs 

identified to be significantly different in relative abundance when comparing the healthy and 

cancer samples through the Kruskal-Wallis test, and they were Alistipes at the genus level 

present in only cancer NAF samples and Sphingomonadaceae at the family level present in both 

healthy and cancer NAF samples (Fig. 15). The PBS OTUs were not significantly different when 

comparing the healthy and cancer samples through the Kruskal-Wallis test. 

  

Figure 15. Original Study Differentially abundant taxa present in NAF. 

Kruskal-Wallis test identifying differentially abundant taxa.  
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Chan et al. Re-analysis Results 

The figures reported in this section are our results from the re-analysis of the Chan et al. 

paper. 

Alpha Diversity. In the alpha diversity analysis, we have implemented the observed 

OTU number along with a nonparametric t-test on NS, NAF, and PBS microbiota. The observed 

OTU number shows the number of OTUs observed for the NS, NAF, and PBS tissues. The t-test 

assesses whether the microbial diversity is significantly different between the healthy control and 

cancer samples from NS, NAF, and PBS environments. The p-values are not significant for NS, 

NAF, and PBS samples (Fig. 16A; Fig. 16B; Fig. 16C). 

 

A B 

C 

Figure 16. Alpha Diversity metric: Observed OTU number. 

(A) NS Observed OTU metric with p-value of 0.489. (B) NAF Observed OTU metric 

with p-value of 0.873. (C) PBS Observed OTU metric with p-value of 0.972.  
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Beta Diversity. In the beta diversity analysis, we have implemented a Bray-Curtis 

dissimilarity metric and performed PCoA using the rarefied OTU abundances as input where the 

genus-level OTUs were used in PCoA. The Adonis test was used to test for compositional 

differences, and the adonis function in the vegan package (Oksanen et al., 2022) from R was 

used to implement this test. The healthy control and cancer samples from the NS microbiota 

appear to separate into clusters, but when running the Adonis test there were no significant 

differences found in the bacterial composition with an unadjusted p-value of 0.262 (Fig. 17A). 

The healthy control and cancer samples from the NAF microbiota appear to separate into 

clusters, but when running the Adonis test there were no significant differences found in the 

bacterial composition with an unadjusted p-value of 0.254 (Fig. 17B). The healthy control and 

cancer samples from the PBS microbiota appear to separate into clusters, but when running the 

Adonis test there were no significant differences found in the bacterial composition with an 

unadjusted p-value of 0.785 (Fig. 17C). 
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A B 

C 

Figure 17. Adonis test: Bacterial Diversity. 

Comparing healthy control women and women with a history of breast cancer 

across (A) NS, (B) NAF, and (C) PBS samples. 
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Proportional Abundance Analysis. In the proportional abundance analysis, we have 

assessed the taxonomic composition of NS, NAF, and PBS microbiota at the phylum level. The 

proportional abundance plots include the top 300 sequences in order to clearly show the taxa 

present at the phylum level. The NS microbial composition was predominantly comprised of the 

phyla Proteobacteria, Firmicutes, and Bacteroidota (Fig. 18A). The PBS microbial composition 

was predominantly comprised of the phyla Proteobacteria, Firmicutes, Bacteroidota, and 

Actinobacteriota (Fig. 18C). The NAF microbial composition was predominantly comprised of 

the phyla Proteobacteria and Firmicutes (Fig. 18B). 

B A 

C 

Figure 18. Proportional abundance 

plot at the phylum level. 

Comparing proportional abundance 

of healthy control women and 

women with a history of breast 

cancer across (A) NS, (B) NAF, and 

(C) PBS samples. 
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Differential Abundance Analysis. In the differential abundance analysis, the Kruskal-

Wallis test was performed on the healthy and cancer samples from NS, NAF, and PBS OTUs and 

this test was performed through the kruskal.test function in the stats package (Bolar, 2019) in R. 

The NS OTUs were not significantly different when comparing the healthy and cancer samples 

through the Kruskal-Wallis test. There was one PBS OTU identified to be significantly different 

in relative abundance when comparing the healthy and cancer samples through the Kruskal-

Wallis test, and it was Bacteroides at the genus level present in only cancer PBS samples with an 

unadjusted p-value of 0.032 (Fig. 19B). There were two NAF OTUs identified to be significantly 

different in relative abundance when comparing the healthy and cancer samples through the 

Kruskal-Wallis test, and they were Alistipes and Acinetobacter at the genus level (Fig. 19A) 

present in both healthy and cancer NAF samples with an unadjusted p-value of 0.045 for 

Acinetobacter and 0.011 for Alistipes. 
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A 

B 

Figure 19. Kruskal-Wallis: significant OTUs. 

(A) NAF: Kruskal-Wallis test result of differentially abundant genera, Acinetobacter and 

Alistipes. (B) PBS: Kruskal-Wallis test result of differentially abundant genus Bacteroides. 
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Urbaniak et al. Original Study Results 

The figures reported in this section are from the original Urbaniak et al. paper. 

Beta Diversity. In the beta diversity analysis, they used weighted UniFrac distance and 

performed PCoA to show the different bacterial microbiota between the cancer and healthy 

samples. They also performed unsupervised K-means clustering of CLR-transformed data which 

was followed by PCoA. They found that the weighted UniFrac PCoA plot showed different 

bacterial profiles between the cancer and healthy samples (Fig. 20A). PERMANOVA was then 

performed on the weighted UniFrac distance which reported a p-value of 0.01, and it was 

deduced that the differences observed are statistically significant. The unsupervised K-means 

clustering was performed using Euclidean distances on the CLR-transformed data and this was 

followed by PCoA (Fig. 20B). The unsupervised K-means clusterplot clearly indicated two 

separate clusters and a clear separation between the healthy and cancer samples, and these results 

were further confirmed through MiRKAT of which the reported p-values were significant. 
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A 

B 

Figure 20. Original Study Comparison of healthy and control samples. 

(A) Weighted UniFrac PCoA plot. (B) K-means cluster plot of clr-

transformed data. 
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Proportional Abundance Analysis. In the proportional abundance analysis, they 

assessed the taxonomic composition of healthy, cancer, and benign samples at the genus level. 

The genus level proportional abundance plot showed a diverse population of bacteria containing 

28 genera and 61 OTUs (Fig. 21). The proportional abundance plot predominantly consisted of 

the phyla Proteobacteria and Firmicutes. 

  

Figure 21. Original Study Proportional abundance plot at the genus level. 
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Differential Abundance Analysis. In the differential abundance analysis, the ALDEx R 

package version 2 (Gloor et al., 2022) was used to compare relative abundances of taxa at the 

genus level of CLR-transformed data. The reported p-values from ALDEx2 are Benjamini-

Hochberg corrected p-values of the Wilcoxon rank test. The ALDEx2 output was visualized 

through boxplots and their results showed significantly higher abundances of the following 

genera in healthy samples Prevotella, Lactococcus, Streptococcus, Corynebacterium, and 

Micrococcus. There were significantly higher abundances of the following taxa in cancer 

samples Bacillus, Staphylococcus, Enterobacteriaceae (unclassified genus), Comamonadaceae 

(unclassified genus), and Bacteroidetes (unclassified genus) (Fig. 22). 

  

Figure 22. Original Study ALDEx2 output. 

Differentially abundant taxa in healthy samples: Prevotella, Lactococcus, Streptococcus, 
Corynebacterium, and Micrococcus. 

Differentially abundant taxa in cancer samples: Bacillus, Staphylococcus, 

Enterobacteriaceae (unclassified genus), Comamonadaceae (unclassified genus), and 

Bacteroidetes (unclassified genus). 
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Urbaniak et al. Re-analysis Results 

The figures reported in this section are our results from the re-analysis of the Urbaniak et 

al. paper. 

 Beta Diversity. In the beta diversity analysis, we performed unsupervised k-means 

clustering on CLR-transformed data. The clr function in the R package compositions (Boogart et 

al., 2022) was used to CLR-transform the data and the pam function in the R package cluster 

(Rousseeuw et al., 2022) was used to perform the unsupervised k-means clustering. There is a 

clear separation between the breast tumor (BT) cancer samples and the healthy (H) samples as 

shown in the clusterplot (Fig. 23) where the two components explain 67.18% of the variability. 

Figure 23. K-means cluster plot comparing healthy and control samples. 

K-means clustering plot of CLR-transformed ASV table output from the DADA2 analysis. 
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Proportional Abundance Analysis. In the proportional abundance analysis, we assessed 

the taxonomic composition of healthy, cancer, and benign samples at the genus level. The genus 

level proportional abundance plot showed a diverse population of bacteria containing 65 genera 

and top 100 OTUs (Fig. 24). The proportional abundance plot consists of Pseudomonas and 

Bacillus across the benign, cancer, and healthy samples, where Escherichia-Shigella was shown 

to be prevalent in the cancer samples. 

  

Figure 24. Proportional abundance plot at the genus level. 

Proportional abundance plot made using the ASV table output from the DADA2 analysis 

and taxonomic assignment based on SILVA version 138, with benign (left), cancer 

(middle), and healthy (right) samples. 
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Differential Abundance Analysis. In the differential abundance analysis, the ALDEx R 

package version 2 (Gloor et al., 2022) was used to compare relative abundances of taxa at the 

genus level of CLR-transformed data. The reported p-values from ALDEx2 are Benjamini-

Hochberg corrected p-values of the Wilcoxon rank test. The ALDEx2 output was visualized 

through boxplots (Fig. 25) and there were 20 statistically significant OTUs and 16 statistically 

significant taxa of which the following genera were significantly higher in abundance in healthy 

samples Acinetobacter, Prevotella_9, Lactobacillus, Corynebacterium, Lactococcus, 

Fusobacterium, Prevotella, Actinomyces, Agathobacter, Campylobacter, Butyrivibrio, Rothia, 

Veillonella, Faecalibacterium, and Micrococcus. There was a significantly higher abundance of 

the following genus in breast tumor cancer samples Bacillus. 

Figure 25. ALDEx2 output. 

The 16 statistically significant taxa visualized through boxplots where on x-axis is healthy 

(right) and breast_tumor (left) and y-axis is the abundance. 
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Discussion and Conclusion 

Hieken et al. study 

In the original study’s results, they found differences between the breast and skin tissue 

microbiota in rare lineages through the observed OTU number and heatmap. However, our 

results from using the ASV table output from DADA2 does not show differences between the 

breast and skin tissue microbiota as shown through the heatmap and Shannon Index, where the 

observed OTU number shows some difference between the two tissues. 

In the original study, they also found a significant difference between breast and skin 

tissue microbiota from performing unweighted UniFrac distance metric but did not find 

significant difference in weighted UniFrac distance. They also found a significant difference in 

microbiota between breast tissue adjacent to invasive cancer and women with benign disease 

from performing unweighted UniFrac distance metric but did not find significant difference in 

weighted UniFrac distance. Additionally, they showed that the microbiome of the different tissue 

types – buccal swab, skin swab, breast tissue, and skin tissue – cluster distinctly from one 

another through a PCoA plot of the unweighted UniFrac distance. 

In our analysis, we performed unweighted and weighted UniFrac distance metrics to 

compare breast and skin tissue microbiota and there was no significant difference found between 

the two tissue microbiota and MiRKAT p-values were not significant with p-values greater than 

0.05. We also performed unweighted and weighted UniFrac distance metrics to compare 

microbiota between breast tissue adjacent to invasive cancer and women with benign disease. 

There was no significant difference found and MiRKAT p-values were not significant with p-

values greater than 0.05. Through a PCoA plot of the unweighted UniFrac distance, we also 
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showed that the microbiome of buccal swab, skin swab, breast tissue, and skin tissue cluster 

separately from one another. Similar to the original study’s results, there is a clear separation 

between the buccal and skin swabs; however, the separation between the breast and skin tissue is 

not as clear as that of the original study’s PCoA plot as the breast tissue overlaps with the tail of 

the buccal swab ellipses and overlaps across the skin tissue. 

Additionally, the original study assessed the taxonomic composition between breast and 

skin tissue, benign and malignant disease states in breast tissue, and buccal and skin swab 

microbiota. There were unclassified taxa frequently observed in their proportional abundance 

plots. However, our results from using the ASV table output from DADA2 does not show any 

unclassified taxa at any taxonomic level in any of the proportional abundance plots, and there are 

more genera identified in our proportional abundance plots as compared to the original study’s 

results. 

In original study’s differential abundance analysis, they observed five differentially low-

abundant genera to be significant and are primarily located in the invasive cancer disease state in 

breast tissue. The five differentially abundant genera prevalent in the invasive cancer disease 

state are Fusobacterium, Atopobium, Gluconacetobacter, Hydrogenophaga, and Lactobacillus. 

However, our results show twelve different differentially abundant taxa that are primarily located 

in the invasive cancer disease state in breast tissue through a more recent method called linda. Of 

the twelve differentially abundant taxa, Eubacterium xylanophilum group, ASF356, 

Colicodextribacter, Lachnospiraceae NK4A136 group, Escherichia-Shigella, and 

Staphylococcus are primarily located in the invasive cancer disease state, Atopobium, 

Bacteroides, and Subdoligranulum are primarily in the benign disease state, and Rikenellaceae 
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RC9 gut group, Veillonella, and Clostridia UCG-014 are prevalent in both the invasive cancer 

and benign disease states. 

Chan et al. study 

In the original study’s results, they implemented observed OTU number on NS, NAF, 

and PBS microbiota and did not find any differences in diversity as the reported p-values were 

not significant. Similarly, our results showed that there were no differences in diversity as the p-

values were not significant. 

In the original study, they implemented a Bray-Curtis dissimilarity metric and the Adonis 

test on NS, NAF, and PBS samples where difference in bacterial diversity was found in the NAF 

samples as the unadjusted p-value was significant for NAF microbiota. In our analysis, through 

the Adonis test, there were no significant differences found across the NS, NAF, and PBS 

samples. 

In comparison of the proportional abundance plots between the original study’s results 

and our results, there were more phyla identified by our ASV table from the DADA2 analysis 

than what was reported in the original study through implementation of updated methods and 

reference database such as DADA2 and SILVA. 

In the original study, they identified two significant OTUs through the Kruskal-Wallis 

test, and those two significant OTUs were present in only NAF samples and the two OTUs were 

the genus Alistipes and family Sphingomonadaceae. In our analysis, there were three significant 

ASVs identified of which two were present in NAF and one in PBS and they were genera 

Alistipes and Acinetobacter in NAF and genus Bacteroides in PBS. 
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Urbaniak et al. study 

In the original study’s results, their K-means clustering plot shows a clear separation 

between the cancer and healthy samples; however, our K-means clustering plot shows some 

overlap between the healthy and cancer samples. The difference between the two states is not as 

clear as it is shown in the original study’s results. 

The proportional abundance plot at the genus level from the original study shows a 

prevalence of Micrococcus in the benign and healthy samples and a prevalence of Bacillus in the 

cancer samples. However, our results show prevalence of Pseudomonas and Bacillus across the 

benign, healthy, and cancer samples, and prevalence of Escherichia-Shigella in cancer samples. 

Additionally, our results have identified more genera as compared to the original study’s results. 

Through performing ALDEx2, the original study reports the following taxa to be 

significantly higher in abundance in healthy samples: Prevotella, Lactococcus, Streptococcus, 

Corynebacterium, and Micrococcus and in cancer samples: Bacillus, Staphylococcus, 

Enterobacteriaceae (unclassified genus), Comamondaceae (unclassified genus), and 

Bacteroidetes (unclassified genus) were significantly higher in abundance. In our results when 

we performed ALDEx2 using the ASV table as input, Prevotella, Corynebacterium, 

Micrococcus, and Lactococcus were also found in higher abundance in healthy samples along 

with Acinetobacter, Lactobacillus, Fusobacterium, Prevotella_9, Actinomyces, Agathobacter, 

Campylobacter, Butyrivibrio, Rothia, Veillonella, and Faecalibacterium. In the cancer samples, 

only Bacillus was found as being significantly higher in abundance. 
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Summary 

 There are overlaps between the original study’s results and results from our analysis; 

however, there are differences where results from our analysis do not identify taxa that the 

original study identifies as significant. There are differences in the proportional abundance as 

results from our analyses are able to identify more taxa and also identify differentially abundant 

taxa that the original studies are not able to identify. The differences between the results from 

our reanalysis and results from the original study could be due to the differences in the 

bioinformatic pipeline that was implemented or in the reference database used to assign 

taxonomy. The differences in the reference database, as alluded to in the introduction of this 

chapter, can contribute to differences in taxa that are identified in both the proportional 

differential abundance analyses between the original study’s results and the re-analysis results. 

The SILVA database is well-maintained and frequently updated whereas the Greengenes 

database is deprecated; however, in preliminary data, not shown here, we performed downstream 

analyses using the ASV table output from DADA2 and the Greengenes reference database and 

we found that our results from these analyses did not mimic the original studies’ results. These 

analyses were performed for the Hieken et al. dataset and Urbaniak et al. dataset, and our results 

tell us that the DADA2 pipeline compared to the original pipeline also plays a large role in 

contributing to the differences found between the re-analysis results and original studies’ results. 

There is further research required to understand the role of the bioinformatic pipeline in 

microbiome analyses.  

 The results found from our re-analysis offer new insight into the breast tissue microbial 

community in healthy, benign, and malignant disease states across different variable regions and 
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patient cohorts. The findings from our re-analysis are able to identify and define more taxa than 

what was previously reported in each study. There are some overlaps between the findings from 

our re-analysis, such as Escherichia-Shigella is found to be differentially abundant in invasive 

cancer breast tissue in the Hieken et al. re-analysis and it was also found to be prevalent in the 

cancer samples in the proportional abundance plot of the Urbaniak et al. re-analysis. Also, 

Veillonella is found to be differentially abundant in benign breast tissue in the Hieken et al. re-         

analysis and is also found to be differentially abundant in healthy breast tissue in the Urbaniak et 

al. re-analysis, and, similarly, Acinetobacter is found to be differentially abundant in the NAF 

cancer disease state in the Chan et al. re-analysis and in healthy breast tissue in the Urbaniak et 

al. re-analysis. There are similarities across the re-analysis results for each study, especially 

when the tissue and disease states are similar as shown between the Urbaniak et al. re-analysis 

and Hieken et al. re-analysis, and these similarities may shine light on the microbial communities 

that could be present in the breast microbiome across disease states.      
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CHAPTER THREE 

META-ANALYSIS 

Introduction 

The meta-analysis combines the following three studies The Microbiome of Aseptically 

Collected Human Breast Tissue in Benign and Malignant Disease study by Hieken et al., 

Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors study by 

Chan et al., and The Microbiota of Breast Tissue and Its Association with Breast Cancer study 

by Urbaniak et al. The Hieken et al. study targets the V3-V5 variable region of their 16S rRNA 

data and look at benign and malignant samples across buccal swab, skin swab, breast, and skin 

tissues. The Chan et al. study targets the V4 variable region of their 16S rRNA data and look at 

women with a history of breast cancer and healthy control samples across NS, NAF, and PBS 

tissues. The Urbaniak et al. study targets the V6 variable region of their 16S rRNA data and look 

at benign, malignant, and healthy samples across breast tissue. In the meta-analysis, the output 

ASV tables from the three studies were combined into one large ASV table, the metadata tables 

for each study were combined into one large metadata table, and the output taxonomy tables for 

each study were combined into one large taxonomy table. These combined files are in pre-

normalization format and post-normalization format, where normalization was performed 

through the percentile_norm python script from the Correcting for batch effects in case-control 

microbiome studies by Gibbons et al. (Gibbons et al., 2018). 
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Methods 

Normalization 

Prior to combining the ASV tables, metadata tables, and taxonomy tables, the ASV tables 

were normalized. Each individual ASV table was first total sum scaled and then normalized by 

running the percentile_norm python script (Gibbons et al., 2018) where the ASV table, control 

sample names, and cancer sample names were input. This python script normalizes the data and 

then converts the normalized values to percentages. After performing normalization, the ASV 

tables, metadata tables, and taxonomy tables were combined into each respective combined table 

for the pre-normalized and normalized datasets. 

Alpha Diversity 

In order to perform alpha diversity analysis, we implemented observed OTU number and 

the Shannon Index on the pre-normalized and normalized data through the MicrobiomeAnalyst 

web interface (Dhariwal et al., 2017). The combined ASV table, metadata table, and taxonomy 

table were input to the MicrobiomeAnalyst web interface for the pre-normalized and normalized 

datasets. 

Beta Diversity Analysis 

 In order to perform beta diversity analysis, we implemented a robust Aitchison PCoA 

plot comparing the microbiota of tissue across all studies, and a robust Aitchison PCoA plot 

comparing tumor vs healthy samples across all studies. Prior to calculating the robust Aitchison 

distance, the combined ASV table was sorted by decreasing abundance with the most abundant 

ASV first and least abundant ASV last through an abundance filter. Thereafter, this ASV table 

was input to phyloseq and this phyloseq object was passed through a prevalence filter through 
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the phyloseq_filter_prevalence function in the metagMisc package in R (Mikryukov, 2018), 

where a prevalence filter of 10% was applied to the pre-normalized ASV table and prevalence 

filter of 25% was applied to the normalized ASV table. After applying the abundance and 

prevalence filters, the ASV table was input to the vegdist function in the vegan package in R 

(Jari Oksanen et al., 2022) to calculate the robust Aitchison distance and this distance was input 

to the pcoa function in the ape package in R (Emmanuel Paradis et al., 2022).  

Proportional Abundance Analysis 

In order to perform proportional abundance analysis, the combined ASV table, metadata 

table, and taxonomy table for both pre-normalized and normalized data were input to the 

phyloseq function to make the proportional abundance plots. The prune_taxa, tax_glom, 

transform_sample_counts functions in phyloseq were implemented to make the proportional 

abundance plots. The proportional abundance plots were made at the phylum, family, and genus 

levels for both the pre-normalized and normalized data. 

Differential Abundance Analysis 

In order to perform differential abundance analysis, Kruskal-Wallis was performed and p-

values were adjusted with the p.adjust function in the stats package in R (Bolar, 2019). The 

combined ASV table, metadata table, and taxonomy table for each dataset, pre-normalized and 

normalized, were passed through the abundance and prevalence filter as stated in this section’s 

beta diversity analysis methods. The otu table from the phyloseq object from the 

phyloseq_filter_prevalence function was input to the kruskal.test function from the stats package, 

and then p.adjust was run to adjust the p-values for correction. The taxa with significant p-values 

were visualized in R in form of dot plots. 



 

 

59 

Furthermore, the combined normalized data was pooled based on different tissue types 

and the modified ASV, metadata, and taxa tables were input to the MicrobiomeAnalyst web 

interface (Dhariwal et al., 2017). In order to compare breast tissue, the benign and malignant 

samples were pooled from the Hieken and Urbaniak datasets as these studies compared breast 

tissue between benign and malignant disease states and comparisons were made by disease 

states. To pool the benign and malignant samples of breast tissue from Hieken and Urbaniak 

datasets, the benign samples from the Hieken data were combined with the benign samples from 

the Urbaniak data and same was applied for combining the malignant samples. Any samples that 

were not breast tissue were removed from both the ASV and metadata tables. The modified 

ASV, metadata, and taxonomy tables were input to MicrobiomeAnalyst and Classical Univariate, 

metagenomeSeq, edgeR, and LEfSe analyses were performed.  

In order to compare skin swabs, the benign, malignant or cancer, and healthy samples 

were pooled from the Hieken and Chan datasets as these studies compared skin swabs between 

benign, cancer, and healthy states. To pool the benign, cancer, and healthy samples of skin swabs 

from Hieken and Chan datasets, the benign samples from the Hieken data were combined with 

the healthy samples from the Chan data as the Chan data did not have benign samples and 

Hieken data did not have healthy samples. The malignant samples from the Hieken data were 

combined with the cancer samples from the Chan data. Any samples that were not skin swabs 

were removed from both the ASV and metadata tables. The modified ASV, metadata, and 

taxonomy tables were input to MicrobiomeAnalyst and Classical Univariate, metagenomeSeq, 

edgeR, and LEfSe analyses were performed. 
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Results 

Alpha Diversity 

In the alpha diversity analysis, the observed OTU number and Shannon Index were 

implemented for the pre-normalized and normalized data. The observed OTU number and 

Shannon Index alpha diversity metrics for the pre-normalized data revealed that the data clusters 

by study which is clearly indicated by the scatter and box plots for the two alpha diversity 

metrics (Fig. 26). The observed OTU number and Shannon Index alpha diversity metrics for the 

normalized data revealed that the data clearly clusters by study through the scatter and box plots 

for the two alpha diversity metrics (Fig. 27).  
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Figure 26. Alpha Diversity metrics for pre-normalized data: Observed OTU number 

and Shannon Index. 

Observed OTU number scatter and box plots (top) and Shannon Index scatter and box 

plots (bottom) show the pre-normalized combined data clusters by study. 
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Beta Diversity 

 In the beta diversity analysis, the robust Aitchison distance metric was performed for the 

pre-normalized and normalized datasets comparing tissue and tumor vs control samples. The 

robust Aitchison distance metric for the pre-normalized data showed that when comparing tissue 

types (Fig. 28A), the samples cluster by study where the Chan samples are clustered separately 

from the Hieken and Urbaniak samples and Hieken samples are clustered separately from the 

Urbaniak samples and a similar trend is observed when comparing the tumor vs control samples 

(Fig. 28B). However, the robust Aitchison distance metric for the normalized data showed that 

when comparing tissue types, the samples mostly cluster by tissue type (Fig. 28C). Similarly, 

when comparing tumor vs control samples, the robust Aitchison distance metric for the 

Shannon
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Figure 27. Alpha Diversity metrics for normalized data: Observed OTU number and 

Shannon Index. 

Observed OTU number scatter and box plots (top) and Shannon Index scatter and 

box plots (bottom) show the normalized combined data clusters by study. 
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normalized data showed that the samples cluster by tumor vs control samples where the tumor 

samples cluster to one side and healthy samples overlap with each other across studies (Fig. 

28D). 

 

  

A B 

C D 

Figure 28. Robust Aitchison PCoA. 

(A) PCoA plot comparing tissue types for pre-normalized data. (B) PCoA plot 

comparing tumor vs control for pre-normalized data. (C) PCoA plot comparing tissue 

types for normalized data. (D) PCoA plot comparing tumor vs control for normalized 

data. 
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Proportional Abundance Analysis 

 In the proportional abundance analysis, the proportional abundance plots at the phylum, 

family, and genus levels were made to compare the taxonomic composition across studies for the 

pre-normalized and normalized data. The proportional abundance plots compared the taxonomic 

composition across studies for tissue samples and tumor vs control samples. The proportional 

abundance plot for the pre-normalized data when comparing tissue microbiota across studies 

shows some similarity in taxonomic composition (Fig. 29). There is an abundance of the phyla 

Bacteroidota and Firmicutes across Hieken breast tissue, Hieken skin tissue, and Urbaniak breast 

tissue. Similarly, there is an abundance of the genus Staphylococcus across all tissue samples. 

The proportional abundance plot for the pre-normalized data when comparing tumor vs control 

samples across studies shows some similarity in taxonomic composition at the phylum level as 

there is a prevalence of the phyla Firmicutes and Proteobacteria across all samples (Fig. 30). At 

the genus level, there is an abundance of Escherichia-Shigella across Hieken benign, Hieken 

malignant, Urbaniak benign, and Urbaniak malignant samples. However, the proportional 

abundance plots at the genus level for the normalized data do not show overlaps between the 

samples across studies. The proportional abundance plots for the normalized data show that the 

taxonomic composition varies by study across all samples, and this is observed in both the tissue 

and tumor vs control samples (Fig. 31; Fig. 32). 

The proportional abundance plot for the normalized data when comparing tissue disease 

states in the pooled samples shows similarity across all the samples (Fig. 33). However, the 

samples still appear to group together by study as the buccal_cells and skin_tissue samples from 

the Hieken study in benign and malignant disease states are similar to each other in abundance. 



 

 

64 

The NAF and PBS samples from the Chan study for the healthy and malignant disease states also 

appear to group together. The benign_breast and malignant_breast samples appear similar to 

each other as those are samples that have the Hieken and Urbaniak benign and malignant disease 

state data combined. The skin samples have the Hieken and Chan healthy and malignant disease 

state data combined, and it appears to be in similar abundance to the benign and malignant breast 

tissue samples. The proportional abundance plot for the pre-normalized data when comparing 

tissue disease states in the pooled samples does not show similarity across all the samples (Fig. 

34). The different tissue samples from the Hieken data do not have similar abundances to each 

other, rather the benign and malignant disease state of a tissue share similar abundances as the 

buccal_cells in the benign and malignant disease state look similar to each other and similarly for 

the skin tissue samples. However, the Chan samples show similar abundances between disease 

states such as the healthy NAF and PBS samples show similar abundances and are different than 

the malignant NAF and PBS samples. The healthy breast tissue also shows similar abundances to 

that of the healthy skin, NAF, and PBS samples. Similar to the normalized proportional 

abundance plot (Fig. 33), the benign and malignant breast tissue samples show similar 

abundance and are also similar to the benign and malignant skin tissue proportional abundances. 

Differential Abundance Analysis 

 In the differential abundance analysis, the significant taxa were identified based on 

adjusted p-values from the Kruskal-Wallis test. In the pre-normalized data, there were 121 OTUs 

and 61 genera identified as significant from the Kruskal-Wallis test after applying the false 

discovery correction. These significant taxa were present when comparing the tumor vs control 

samples in the pre-normalized data (Fig. 35). In the normalized data, significant taxa were not 
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Figure 29. Proportional 

abundance plot at the phylum 

and genus levels of pre-

normalized data – tissues. 

Comparing tissue samples 

across all studies. 

Figure 30. Proportional 

abundance plot at the 

phylum and genus levels of 

pre-normalized data – type. 

Comparing tumor vs control 

samples across all studies. 

 

Figure 31. Proportional 

abundance plot at the 

phylum and genus levels of 

normalized data – tissues. 

Comparing tissues across all 

studies. 

 

identified, through the Kruskal-Wallis test, after applying the false discovery correction to the p-

values.  



 

 

66 

  

Figure 32. Proportional 

abundance plot at the 

phylum and genus levels of 

normalized data – type. 

Comparing tumor vs control 

samples across all studies. 

Figure 33. Proportional abundance 

plot at the phylum and genus levels 

of normalized data – type and tissue. 

Comparing pooled samples across 

all studies. The benign_breast 

samples consist of Hieken benign 

breast tissue samples combined with 

Urbaniak benign breast tissue and 

similar with the malignant breast 

tissue. The healthy_skin samples 

consist of Hieken benign skin swabs 

and Chan healthy skin swabs, and 

the cancer skin swabs are also 

combined from both studies for the 

cancer_skin samples. 

Figure 34. Proportional abundance 

plot at the phylum and genus levels of 

pre-normalized data – type and tissue. 

Comparing pooled samples across all 

studies. The benign_breast samples 

consist of Hieken benign breast tissue 

samples combined with Urbaniak 

benign breast tissue and similar with 

the malignant breast tissue. The 

healthy_skin samples consist of 

Hieken benign skin swabs and Chan 

healthy skin swabs, and the cancer 

skin swabs are also combined from 

both studies for the cancer_skin 

samples. 
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Figure 35. Kruskal-Wallis: significant taxa for pre-normalized data. 
Dot plots of the significant taxa found in the pre-normalized data where the x-axis are the samples and y-axis are the 
logscale of the abundance data. The most abundant taxa are shown to be Muribaculaceae and Bacteroides across the 
studies based on the dot plots. 
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67 

 

In order to further look at differentially abundant taxa in the normalized data, the 

significant taxa were identified based on adjusted p-values from Classical Univariate, 

metagenomeSeq, edgeR, and LEfSe analyses in MicrobiomeAnalyst (Dhariwal et al., 2017) for 

comparing across all tissue types and disease states. The significant taxa were visualized through 

box plots and they show the significance being separated by study when comparing across all 

samples from all three studies (Fig. 36). When comparing all samples from the three studies at 

once, there were thousands of taxa identified to be significant; hence, we then compared only 

skin swab samples and breast tissue samples for specific studies. The significant taxa were also 

identified based on adjusted p-values from Classical Univariate, metagenomeSeq, edgeR, and 

LEfSe analyses in MicrobiomeAnalyst (Dhariwal et al., 2017) for comparing breast tissue and 

skin swab microbiota. There were no significant taxa found when comparing skin swabs from 

Hieken and Chan datasets from any analyses in MicrobiomeAnalyst. There were five significant 

taxa found when comparing breast tissue from Hieken and Urbaniak datasets, of which two were 

from metagenomeSeq analysis and three were from edgeR analysis. In metagenomeSeq the 

genera Lactococcus and Agathobacter were identified as significant (Fig. 37A) and in edgeR the 

Figure 36. Comparison of all samples across the three studies. (A) Comparing tissues across the 
three studies. (B) Comparing disease states across the three studies. 
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genera Lactococcus, Agathobacter, and Prevotella_9 were identified as significant (Fig. 37B). 

The boxplot results show that the significance is primarily driven by outliers that are located at 

the top of each plot (Fig. 37). 

 

Discussion and Conclusion 

 The different types of analyses performed on the pre-normalized and normalized data 

show that, prior to normalization, the results show some overlap in taxonomic composition 

Figure 37. Differentially abundant taxa from metagenomeSeq and edgeR output. 
(A) The significant taxa from metagenomeSeq output are Agathobacter (ASV6172) and 
Lactococcus (ASV6150). (B) The significant taxa from edgeR output are Agathobacter 
(ASV6172), Lactococcus (ASV6150), and Prevotella_9 (ASV6128). 
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amongst similar types of samples across studies, such as the genus Escherichia-Shigella being 

abundant in benign and malignant samples across the Hieken and Urbaniak studies. Similarly, 

these different analyses also show that, prior to normalization, the results show differentially 

abundant significant taxa for the benign, malignant, and healthy samples across studies. 

However, after normalizing the data, the results show that the taxonomic composition varies by 

study and that there are no differentially abundant significant taxa identified from analyses that 

compare samples between studies. The differences between the pre-normalized and normalized 

data are due to the fact that normalization helps to reduce study-specific biases. While study-

specific biases were not completely removed in our meta-analysis, the study-specific biases were 

greatly reduced. This is clear in the proportional abundance plots as there is greater variability in 

the pre-normalized abundance plots, and similarly, in the beta diversity analyses, the samples 

separate by study in the pre-normalized data whereas there is separation by sample in the 

normalized data.  

 In the breast tissue and skin swab analyses from MicrobiomeAnalyst, there were some 

significant taxa identified from metagenomeSeq and edgeR. In the skin swab analyses, there 

were no significant taxa found. This is what was found in the results from each individual study. 

There were no significant taxa found for skin swabs from the Hieken study’s original results, and 

no significant taxa were found for skin swabs from the Chan study’s original results. In the 

breast tissue analyses, there were significant taxa identified from metagenomeSeq and edgeR. 

This is similar to what was found in the original Urbaniak study’s results. In the Urbaniak study, 

they implemented ALDEx2 (Gloor et al., 2022) for differential abundance analysis and identified 

ten taxa to be significant in breast tissue between cancer and healthy samples. The results from 
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metagenomeSeq and edgeR identified Lactococcus, Agathobacter, and Prevotella_9 as 

significant where only edgeR identified Prevotella_9 as significant and Lactococcus and 

Agathobacter were identified as significant by both metgenomeSeq and edgeR. These three 

genera are also identified as significant in the ALDEx2 output from our re-analysis of the 

Urbaniak data (Fig. 25).  

The Urbaniak study’s original results also identified Lactococcus as significant, and there 

are no significant taxa from the Hieken study’s original results that overlap with results from 

metagenomeSeq and edgeR. A reason that the Hieken study’s results may not overlap with our 

results from metagenomeSeq and edgeR is that the Urbaniak study’s patient sample size is much 

larger than that of the Hieken study’s patient sample size. There were 71 women in the Urbaniak 

study and 33 patients in the Hieken study; hence, the larger patient sample size of the Urbaniak 

study may be the reason that it is well-represented in our metagenomeSeq and edgeR results. 
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CHAPTER FOUR 

DISCUSSION AND CONCLUSION 

The individual studies implemented tools, pipelines, and methods that are outdated and 

are not currently used for bioinformatic analyses, such as IM-TORNADO and the Greengenes 

reference database. While we have observed results that are similar to that of each original 

study’s results such as when distinguishing between cancer and healthy samples, there are 

differences present. Our results have identified more taxa than the original studies and have 

shown that some taxa identified to be significant in the original paper are not found to be 

significant when re-analyzed with more recent and up-to-date techniques and methods. As 

mentioned in the introduction, differences in both the bioinformatic pipeline and reference 

database can contribute to differences in taxonomic assignment and downstream analyses results. 

The methods implemented in our re-analysis are the updated and known to perform better than 

their older counterparts. The ASV table approach through DADA2 provides greater resolution 

and lowers false positives (Prodan et al., 2020), and the SILVA database is known to perform 

better than the Greengenes database (Almeida et al., 2018).  

Additionally, the Hieken et al., Chan et al., and Urbaniak et al. studies are seminal papers 

in the breast cancer microbiome field, and these studies were not able to get a complete and 

accurate picture of the breast microbiome. Through our re-analysis, we are able to improve upon 

their results using modern best practices and have discovered new phenomenon that are hitherto 

unknown and are able to correct their mistaken findings. These findings are important as they 
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will help to elucidate the direction that researchers interested in the breast cancer microbiome 

should move towards to investigate the appropriate taxa found in the breast microbiome. 

Therefore, re-analyses of past results and studies are needed to provide the most accurate and 

reliable results in the scientific community. 

 In meta-analyses approach it is important to normalize each individual study prior to 

combining the studies. The normalization removes noise and resolves artifactual results found in 

the non-normalized microbiome data. Normalization is important in order to remove or reduce 

study-specific biases to allow for accurate downstream analyses. In the pre-normalized data, 

there are more overlaps and significance observed across the studies, whereas in the normalized 

data these overlaps and significant taxa are removed. The overlaps and significant taxa observed 

in the pre-normalized data are most likely due to artifacts in the microbiome data. The study-

specific biases were not completely removed after normalizing the data as study effect was 

shown in the alpha diversity, proportional abundance, and differential abundance analyses. A 

reason for that may be because each study has samples from patients in different geographical 

regions where differences in environment, diet, and lifestyle can affect the microbial 

composition. The Hieken study has samples collected from patients in Minnesota, the Chan 

study has samples collected from patients in California, and the Urbaniak study has samples 

collected from patients in Canada.  

Through our meta-analysis, we are combining multiple studies that investigate the breast 

cancer microbiome and perform statistical and differential abundance analyses to search for 

biomarkers or significant microbes that appear across studies in cancer or control samples. 

Through the meta-analysis, we are providing new findings on whether there is a distinct 
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microbial composition in different samples such as cancer vs control samples. These new 

findings include that normalization prior to implementing a cross-study meta-analysis is 

important to reduce study-specific biases and variability as shown through the beta diversity and 

proportional abundance analyses; hence, is important to remove noise and artifacts from 

microbiome data. By choosing not to normalize data prior to cross-study meta-analyses, it may 

lead to identifying superficial similarities and differentially abundant taxa that may be artifactual 

data identified as being significant. Lastly, through our re-analysis of each dataset, it was found 

that our re-analysis identified more proportional and differential abundance taxa at the genus 

level than the original study’s results as more taxa have been defined since 2016 in the frequently 

updated SILVA database and improvements in bioinformatic pipeline analyses have refined 

results.    
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