
Loyola University Chicago Loyola University Chicago 

Loyola eCommons Loyola eCommons 

Master's Theses Theses and Dissertations 

2023 

Incorporating Sex Chromosomes in Transcriptome Prediction Incorporating Sex Chromosomes in Transcriptome Prediction 

Models and Improving Cross-Population Prediction Performance Models and Improving Cross-Population Prediction Performance 

Daniel S. Araujo 

Follow this and additional works at: https://ecommons.luc.edu/luc_theses 

 Part of the Bioinformatics Commons 

Recommended Citation Recommended Citation 
Araujo, Daniel S., "Incorporating Sex Chromosomes in Transcriptome Prediction Models and Improving 
Cross-Population Prediction Performance" (2023). Master's Theses. 4494. 
https://ecommons.luc.edu/luc_theses/4494 

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It 
has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more 
information, please contact ecommons@luc.edu. 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. 
Copyright © 2023 Daniel S Araujo 

https://ecommons.luc.edu/
https://ecommons.luc.edu/luc_theses
https://ecommons.luc.edu/td
https://ecommons.luc.edu/luc_theses?utm_source=ecommons.luc.edu%2Fluc_theses%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=ecommons.luc.edu%2Fluc_theses%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.luc.edu/luc_theses/4494?utm_source=ecommons.luc.edu%2Fluc_theses%2F4494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/


 

LOYOLA UNIVERSITY CHICAGO 

 

 

 

INCORPORATING SEX CHROMOSOMES IN TRANSCRIPTOME PREDICTION 

MODELS AND IMPROVING CROSS-POPULATION PREDICTION PERFORMANCE 

 

 

 

 

 

A THESIS SUBMITTED TO  

 

THE FACULTY OF THE GRADUATE SCHOOL 

 

IN CANDIDACY FOR THE DEGREE OF 

 

MASTER OF SCIENCE 

 

 

 

 

PROGRAM IN BIOINFORMATICS 

 

 

 

 

BY 

 

DANIEL S. ARAUJO 

 

CHICAGO, IL 

 

MAY 2023 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by Daniel S. Araujo, 2023 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

ACKNOWLEDGMENTS 

 First and foremost, I would like to thank Dr. Heather Wheeler for giving me the 

chance to join her research group, as well as for her incredible mentorship over the years. I 

am beyond grateful for all the learning opportunities given to me throughout the years, and 

for the space and resources provided to me so I could learn more about a subject I became 

deeply passionate about. Additionally, I would also like to thanks all members of the Wheeler 

Lab who have directly or indirectly helped me during my thesis project. More specifically, I 

wish to thank Henry Wittich, who welcomed me to Chicago and helped me to adapt to a new 

chapter of my life, and with whom I was capable to develop a strong friendship outside of the 

lab.  Furthermore, I would like to acknowledge the support of the Bioinformatics Program for 

granting me the Graduate Research Fellowship throughout my time at Loyola.  

 Lastly, I would like to thanks my family and friends back in Brazil who believed in 

me and helped me realize I was ready to take an opportunity to study abroad. In particular, I 

would like to thank my parents for all the unconditional support throughout my whole life, 

which made it possible for me to pursue my own dreams and goals. Everything I have ever 

accomplished and will ever do is a consequence of their encouragement.  

 

 

 

 



iv 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS                  iii 

LIST OF TABLES                    v 

LIST OF FIGURES                    vi 

LIST OF ABBREVIATIONS                  vii 

ABSTRACT                    ix 

INTRODUCTION                    1 

      Human Genetic Variation                  1 

      Genome-wide Association Studies                3 

      Transcriptome-wide Association Studies                5 

      Underrepresentation in Association Studies               7 

      Summary                    9 

METHODS                     11 

      Training dataset                   12 

      Genotype and RNA-Seq QC                 12 

      Gene Expression Cis-Heritability Estimation               13 

      Transcriptome Prediction Models                 14 

      Assessing Transcriptome Prediction Performance              16 

      Applications in Association Studies                16 

 

RESULTS                     19 

      Increased Sample Sizes Improve Gene Expression Cis-Heritability Estimation           19 

      MASHR Models Improve Cross-Population Prediction Performance            21 

      Leveraging Effect Sizes Across Different Populations Improves Discovery  

Rate in Multi-Ethnic TWAS                 31 

 

DISCUSSION AND CONCLUSION                 37 

REFERENCE LIST                    41 

VITA                      50 

 

 

 

 



v 

 

 

 

LIST OF TABLES 

Table 1. Matched PAGE and PanUKBB phenotypes.              17 

Table 2. Median gene expression prediction performance (Spearman’s rho) of  

   TOPMed MESA models in Geuvadis.                26 

 

Table 3. All unique gene-trait association pairs that replicated in both PAGE and 

   PanUKBB with same direction of effect, with the corresponding model that  

   detected the association with the lowest p-value.               31 

 

Table 4. Potentially novel gene-trait associations found in our TWAS and models  

   that detected them.                   35 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

LIST OF FIGURES 

Figure 1. Overall study methodology.                10 

Figure 2. Design of the methodology implemented to make MASHR models.           15 

Figure 3. PBMC gene expression cis-heritability estimates across MESA  

   populations.                    20 

 

Figure 4. Comparison of MESA population transcriptome prediction models.           22 

Figure 5. Genotype principal component analysis.               23 

Figure 6. Prediction performance of MESA population models in Geuvadis GBR  

   and YRI populations.                  25 

 

Figure 7. Number of significant S-PrediXcan gene-trait pairs in PAGE and 

   PanUKBB GWAS summary statistics.                34 

 

Figure 8. Number of significant S-PrediXcan gene-trait pairs in PAGE and  

   PanUKBB GWAS summary statistics that have been reported in the GWAS  

   catalog.                    36 

 

 

 

 

 

 

 

 



vii 

 

 

 

LIST OF ABBREVIATIONS 

AFA  African American population in MESA 

ALL  All individuals of Geuvadis combined 

CEU  Utah residents with Northern and Western European ancestry in Geuvadis 

CHN  Chinese population in MESA 

EN  Elastic Net 

eQTL  Expression quantitative trait locus 

EUR  European population in MESA 

FIN  Finnish in Finland in Geuvadis 

GBR  British in England and Scotland in Geuvadis 

GTEx  Genotype-Tissue Expression Project 

GWAS  Genome-Wide Association Study 

HIS  Hispanic population in MESA 

HWE  Hardy-Weinberg Equilibrium 

INDEL Insertion or deletion of nucleotides 

LD  Linkage-disequilibrium 

MAF  Minor allele frequency 

MASHR Multivariate adaptive shrinkage in R 

MB  Megabase (1,000,000 base pairs) 

MESA  Multi-Ethnic Study of Atherosclerosis  

PAGE  Population Architecture using Genomics and Epidemiology study 

PanUKBB Pan-ancestry genetic analysis of the UK Biobank 



viii 

SNP  Single nucleotide polymorphism 

TOPMed NHLBI Trans-Omics for Precision Medicine consortium 

TPM  Transcripts per million 

TSI  Toscani in Italy in Geuvadis 

TWAS  Transcriptome-Wide Association Study 

YRI  Yoruba in Ibadan, Nigeria in Geuvadis 

 

 

 

 

 

 



ix 

 

 

 

ABSTRACT 

Transcriptome prediction models built with data from European-descent individuals are less 

accurate when applied to different populations because of differences in linkage 

disequilibrium patterns and allele frequencies. We hypothesized multivariate adaptive 

shrinkage may improve cross-population transcriptome prediction, as it leverages effect size 

estimates across different conditions - in this case, different populations. To test this 

hypothesis, we made transcriptome prediction models for use in transcriptome-wide 

association studies (TWAS) using different methods (Elastic Net, Matrix eQTL and 

Multivariate Adaptive Shrinkage in R (MASHR)) and tested their transcriptome prediction 

accuracy in population-matched and cross-population scenarios. Additionally, to evaluate 

model applicability in TWAS, we integrated publicly available multi-ancestry genome-wide 

association study (GWAS) summary statistics from the Population Architecture using 

Genomics and Epidemiology Study (PAGE) and Pan-UK Biobank with our developed 

transcriptome prediction models. In regard to transcriptome prediction accuracy, MASHR 

models had similar performance to other methods when the training population ancestry 

closely matched the test population, but outperformed other methods in cross-population 

predictions. Furthermore, in multi-ancestry TWAS, MASHR models yielded more 

discoveries that replicate in both PAGE and PanUKBB across all methods analyzed. Overall, 

we demonstrate the importance of using methods that incorporate effect size estimates from 

multiple populations in order to improve TWAS for multi-ancestry or underrepresented 

populations. 
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INTRODUCTION 

Human Genetic Variation 

All current living humans share an ancestral population that lived in Africa 

approximately 200,000 years ago (Cann, Stoneking, and Wilson 1987). Members of that 

ancestral population and their descendants migrated to other regions of the globe, which is 

known nowadays as the “out-of-Africa” dispersal (Klein 2008). However, there is a debate 

regarding where modern humans originated within the African continent. Some authors 

defend a model of multiregionalism that postulates that distinct populations co-evolved, with 

multiple gene flow events due to migration, while others believe that one population 

expanded its range and predominated over others, with possibility of regional admixtures 

(Henn, Steele, and Weaver 2018). Still, the theory that modern humans originated in Africa 

and migrated out of the continent, known as recent African origin, has widespread acceptance 

(Stringer 2014).  

However, although humans present a wide range of distinct phenotypes, genetically, 

we are extremely similar. In fact, it is estimated that on average, two individuals share 99.9% 

of their DNA (Fine, Ibrahim, and Thomas 2005). This is because humans are more related to 

each other than one might think. An individual’s genealogical tree grows exponentially for 

every generation, which eventually would become larger than the number of all humans who 

have ever lived (Derrida, Manrubia, and Zanette 2000). This issue is solved if taken into 

account that genealogical trees coalesce and collapse on themselves, with many ancestors 

being relatives and occupying multiple positions (Derrida, Manrubia, and Zanette 2000). 
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Consequently, is it possible to estimate a point in time in which all current living humans 

share every ancestor in common, known as the genetic isopoint. According to previous 

studies, the global genetic isopoint is fairly recent, occurring 3,400 years ago (Rutherford 

2020).  

The 0.1% of differences in the DNA sequence among individuals, also known as 

DNA polymorphisms, can have different causes, and depending on different factors, may be 

lost or fixed in a population. The migration out of Africa is a recent event in human history, 

and thus, most of the natural history of humans occurred in Africa. Consequently, African 

populations harbor the highest levels of genetic diversity in the world (Tishkoff and Williams 

2002). Such discrepancies between African and non-African populations are due to the 

multiple population bottleneck events that happened throughout human history (Campbell 

and Tishkoff 2008). As individuals migrated to different regions, they carried only a fraction 

of the genetic diversity of the original population.  

 Ever since the early 2000s, when the human genome was finally sequenced and 

sequencing costs became progressively cheaper, many efforts to sample the genetic diversity 

across human populations have been made. One such example is the 1000 Genomes Project 

Consortium, which initially sequenced and analyzed the genomes of 1,092 individuals from 

14 populations (The 1000 Genomes Project Consortium 2012). The project showed that most 

common human genetic variations are found almost in every population, but rare variants 

(frequency < 1%) tend to be population-specific. Furthermore, most of the rarer DNA 

polymorphisms were found in current African populations, which is in agreement to the out-

of-African human dispersal theory, as those groups did not go through major genetic 

bottleneck events. The 1000 Genomes Project was later incorporated into the International 

Genome Sample Resource (IGSR), and its numbers have greatly increased over the years, 
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reaching 2,706 samples across 26 populations (Clarke et al. 2017). Besides data from the 

1000 Genomes Project, IGSR also contains data from other initiatives, such as The Gambian 

Genome Variation Project, Simons Diversity Project, and Human Genome Diversity Project.  

Genome-wide Association Studies 

 DNA polymorphisms can be of different types, such as variation in the number of 

copies of tandem repeats, insertions or deletions of multiple nucleotides, or single nucleotide 

differences, also known as single nucleotide polymorphisms (SNPs). More specifically, SNPs 

happen in cases in which at the same base pair position in the genome, two or more 

nucleotides are found when comparing the genome of distinct people. These different 

“versions” are called alleles. In comparison to other polymorphisms, SNPs are more 

common, stable, and dispersed throughout the genome (Shastry 2002). However, although 

very simple (it is only a single nucleotide change), SNPs have subtypes. These variants can 

be found outside of genes, in what is known as non-coding regions of the genome, or inside 

of genes. When inside of genes, SNPs can either be intronic or exonic – inside introns or 

exons, respectively. Lastly, if exonic, SNPs are synonymous mutations if the encoded amino 

acid remains the same, nonsynonymous mutations if the encoded amino acid is not the same 

as the original, or nonsense if the mutation changes the codon to a stop codon (Shastry 2002).  

 In situations in which SNPs are found inside of genes, it is fairly simple to test the 

association of changes in the DNA sequence to gene function. However, only a small fraction 

of the genome is comprised of protein-encoding genes (International Human Genome 

Sequencing Consortium 2004). Thus, different tools to understand the influence of SNPs 

have been developed. One example is genome-wide association studies (GWAS), in which 

millions of SNPs are tested for associations with a trait. The phenotypes tested for association 

can be either discrete, in which human subjects are split into control and case groups, or 
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continuous. The reasoning behind GWAS is that if a SNP has a higher frequency in the case 

group, for instance, then it is likely that that SNP is associated to the phenotype of interest 

(Cano-Gamez and Trynka 2020). However, GWAS are heavily influenced by different 

factors, such as sample size, allele frequencies, linkage disequilibrium patterns, and 

heritability of the investigated trait (Visscher et al. 2017).  

 Most phenotypes investigated in GWAS are complex, meaning that they may be 

influenced by many SNPs, such as heart diseases or psychiatric disorders (Visscher et al. 

2012). Those SNPs, in turn, occur at different rates, which are known as allele frequencies. 

Common SNPs (minor allele frequencies [MAF] higher than 1%) are usually well studied, as 

they do not require the same degree of statistical power conferred by larger sample sizes in 

comparison to rarer SNPs, especially those with frequency less than 1% (Altshuler et al. 

2010). This is one example of why sample size is an important factor for GWAS, and the 

reason GWAS are usually done in larger consortiums, such as the Trans-Omics for Precision 

Medicine Program, the Million Veteran Program, and the Global Lipids Genetic Consortium 

(Uffelmann et al. 2021; Taliun et al. 2021; Gaziano et al. 2016; Willer et al. 2013). However, 

it is crucial to recognize that simply because a SNP is associated to a phenotype, it does not 

mean that it is causal. Causal inferences are hard to confirm due to linkage disequilibrium 

between SNPs, that is, the non-independent correlation between two physically close SNPs in 

the DNA (Uffelmann et al. 2021). Consequently, in a typical GWAS, usually it is observed 

that groups of physically close SNPs are associated to a phenotype, with perhaps just one 

member of the group being the true causal SNP (Dandine-Roulland and Perdry 2015). 

Attempts to distinguish the true causal SNP among groups of linked SNP are refereed as fine-

mapping, and different statistical methods can be applied, such as using marginal association 

statistics or posterior probabilities (Kichaev et al. 2014). 
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 Additionally, many complex traits, such as human diseases, are influenced by a 

combination of genetic and environmental factors (Chakravarti and Little 2003). The 

interplay between genetics and environment is not necessarily evenly split, as some traits 

have a bigger influence of genetic or environmental factors. The proportion of variance 

observed in a phenotype that is explained by genetic factors is deemed heritability (often 

represented by h²), and can range from 0 to 1 – therefore, the bigger h² is, the stronger the 

correlation between the phenotype and genetics (Visscher, Hill, and Wray 2008). Thus, as 

GWAS test SNPs for association with a trait, it is important to be mindful that they can only 

be used to understand the genetically influenced component of a phenotype. 

Transcriptome-wide Association Studies 

 As aforementioned, most SNPs are found outside of genes, which makes the 

biological interpretation difficult for most associations. Often, most authors will assign 

phenotype-associated SNPs to the nearest gene in the genome, which may not reflect true 

biological meanings (Petersen et al. 2013). Thus, different approaches have been designed to 

understand the link between genes and phenotypes of interest, such as PrediXcan and 

FUSION, which perform transcriptome-wide association studies (TWAS) (Gamazon et al. 

2015; Mancuso et al. 2018).   

 In a GWAS, SNPs are tested for association with a trait. In a TWAS, genetically 

predicted gene expression levels (RNA levels) are tested for association for a trait. To 

achieve this, TWAS rely on gene expression prediction models built using expression 

quantitative trait loci (eQTLs), which are SNPs associated to the expression of certain genes 

(Nica and Dermitzakis 2013). eQTLs can be classified as cis-acting if they influence the 

expression of a nearby gene, or trans-acting eQTLs if they play a part in modulating the 

expression of a gene far away, such as on a different chromosome, although they tend to have 
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smaller effect sizes and thus larger samples are needed to detect them (Westra and Franke 

2014). As cis-eQTLs are easier to detect and have higher effect sizes in comparison to trans-

eQTLs, gene expression prediction models rely on them. Thus, using cis-eQTLs, gene 

expression is estimated by performing a weighted-sum of allele dosages, as shown in the 

following equation, in which Ŷ is the estimated gene expression for a particular gene, n is the 

number of cis-eQTLs in the model, Wk is the effect size for SNP k, and Xk is the dosage of the 

SNP k. 

𝑌̂ = ∑𝑊𝑘𝑋𝑘

𝑛

𝑘=1

 

 In contrast with GWAS, as TWAS test RNA levels for association, they provide 

information about which genes are up- or down-regulated in regards to a phenotype of 

interest (Barbeira et al. 2019).  This helps to pinpoint specific genes that might be the target 

for possible therapeutic drugs (Mulford et al. 2021). Furthermore, gene expression prediction 

models for use in TWAS tend to be tissue-specific. Unlike DNA, which is virtually the same 

in all cells in the body with the exception of somatic mutations that occur throughout an 

individual’s life, RNA levels can naturally differ between tissues (Zhu et al. 2016). In 

agreement to that, studies have found tissue-specific eQTLs, although most cis-eQTLs are 

shared between tissues (Aguet et al. 2017; Kirsten et al. 2015). However, some eQTLs may 

have opposite direction of effect in different tissues (Mizuno and Okada 2019). One major 

scientific effort made to help identify eQTLs across different human tissues is the Genotype-

Tissue Expression (GTEx) project, which has collected and analyzed samples from over 40 

different tissues in order to investigate gene expression profiles across all of them (The GTEx 

Consortium et al. 2015). Moreover, one limitation of gene expression prediction models is 

that they only account for the expression influenced by genetic factors (Wainberg et al. 
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2019). Similarly to other complex traits, gene expression can also be affected by 

environmental factors (Gibson 2008). Consequently, gene expression prediction models have 

higher accuracy when estimating the expression of genes whose expression is highly heritable 

(Li et al. 2018).    

Underrepresentation in Association Studies 

 Over the years, due to the wide applicability and popularity of GWAS, it became 

necessary to gather all generated results in a single platform to facilitate access to them. Thus, 

the National Human Genome Research Institute (NHGRI) and the European Molecular 

Biology Laboratory – European Bioinformatics Institute (EMBL-EBI) joined efforts to create 

the NHGRI-EBI GWAS Catalog (Welter et al. 2014; MacArthur et al. 2017).  As of July 

2022, the GWAS Catalog contained information about more than 400,000 SNP-phenotype 

associations across over 6,000 publications (Sollis et al. 2023). However, by analyzing the 

data in the GWAS Catalog, it is possible to notice gaps within GWAS. For instance, the 

majority of GWAS focus only on the autosomal chromosomes, ignoring the genetic content 

of the X chromosome (Kukurba et al. 2016). A survey done in 2013 analyzing the GWAS 

Catalog revealed that only 33% of studies included the X chromosome in their analysis 

(Wise, Gyi, and Manolio 2013). Ten years later, the scenario has not changed much. A recent 

study investigated GWAS summary statistics published in 2021, and found out that only 25% 

of them provided results for the X chromosome (Sun et al. 2023). The proportion of studies 

that provide results for Y chromosome is even lower – only 3% (Sun et al. 2023). This 

underrepresentation is likely due do the fact that analysis on the sex chromosomes require 

specialized methods due to different dosages between males and females (Wise, Gyi, and 

Manolio 2013). Consequently, most GWAS fail to acknowledge the relationship between the 

sex chromosomes and complex traits (Kukurba et al. 2016; Brumpton and Ferreira 2016).  
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Additionally, another gap found within studies in the GWAS Catalog is the 

population underrepresentation. As previously discussed, different human populations may 

have distinct allele frequencies and linkage disequilibrium patterns due to genetic bottleneck 

events as consequence of distinct migration patterns (Campbell and Tishkoff 2008). Although 

the average genetic difference between individuals is extremely small (around 0.1%), 

undersampling the genetic diversity that exists among populations can negatively impact the 

portability of association studies results, that is, associations found in one population may not 

happen in other populations (Martin et al. 2019). In 2009, 96% of all individuals in studies in 

the GWAS Catalog were of European ancestry (Popejoy and Fullerton 2016). Almost ten 

years later, in 2018, European-descent individuals comprised almost 80% of all individuals in 

the GWAS Catalog, even though they corresponded to 16% of the world’s total population 

(Martin et al. 2019). Many efforts have been made to try to increase genetic diversity in 

human genetics with hopes to reduce health disparities among individuals of different 

ancestries, such as the NHLBI Trans-Omics for Precision Medicine consortium, the Human 

Heredity and Health in Africa initiative, and the All of Us Research program (Taliun et al. 

2021; The H3Africa Consortium et al. 2014; The All of Us Research Program Investigators 

2019). Note, although individuals that participate in association studies are often clustered 

into continental ancestries groups (e.g. African, Asian, European, etc.), genetic ancestry is 

actually multi-dimensional and continuous – depending on the timescale, individuals will 

have multiple ancestries (Lewis et al. 2022).   

Moreover, similarly to GWAS, TWAS also suffer from the same underrepresentation. 

Gene expression prediction models are often trained using data from individuals of European 

descent due to the data availability bias, such as from GTEx, and as previous studies have 

shown, those prediction models have lower prediction accuracy when applied to non-
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European population datasets (Keys et al. 2020; Mikhaylova and Thornton 2019; Mogil et al. 

2018). In fact, TWAS have higher power for discovery and replication when the gene 

expression prediction model was trained in a cohort of similar ancestry of the test dataset 

(Geoffroy, Gregga, and Wheeler 2020). Similar results have been observed in protein-wide 

association studies as well (Schubert et al. 2022). Nevertheless, the biological mechanisms 

behind complex traits are expected to be conserved across all populations (Qiao et al. 2022). 

Thus, it is important to build gene expression prediction models that account for the allelic 

differences among populations and better estimate effect sizes to better understand the 

genetics of complex traits across all human populations (Geoffroy, Gregga, and Wheeler 

2020). 

Summary 

 In this thesis, we sought to develop gene expression prediction models with a higher 

cross-population prediction accuracy for use in multi-ethnic TWAS. As aforementioned, non-

European genetic ancestry representation has been increasing in GWAS over the years, 

although it still is a small fraction (Martin et al. 2019). Likewise, gene expression prediction 

models for use in TWAS are often trained in European-descent individuals data and show 

poor cross-population prediction performance due to differences in allele frequencies, eQTL 

effect sizes and linkage-disequilibrium patterns between populations (Keys et al. 2020; 

Mikhaylova and Thornton 2019). Thus, as many scientific efforts have been trying to 

increase genetic data diversity in GWAS, it is important to develope new gene expression 

prediction models that will estimate gene expression levels across different populations with 

a higher accuracy than current methods.  

 For this, we used whole genome genotyping and RNA-sequencing data from the 

TOPMed Multi-Ethnic Study of Atherosclerosis (MESA), which includes X chromosome 
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data, to build gene expression prediction models for TWAS (Bild et al. 2002). The training 

dataset contains data from three cell types (CD16+ monocytes, CD4+ T-cells, and peripheral 

blood mononuclear cells [PBMC]). Furthermore, each cell type dataset contains individuals 

of up to four distinct populations (African American [AFA], Chinese [CHN], European 

[EUR], or Hispanic/Latino [HIS) (Figure 1). To build  population-specific gene expression 

prediction models, we used three distinct methods: elastic net, unadjusted Matrix eQTL, and 

multivariate adaptive shrinkage in R (MASHR) (Zou and Hastie 2005; Friedman, Hastie, and 

Tibshirani 2010; Shabalin 2012; Urbut et al. 2019). Later, we assessed population-matched 

and cross-population gene expression prediction performance using a test dataset that 

contained individuals of distinct continental ancestries. Lastly, we assessed the applicability 

of our models in a multi-ethnic TWAS, using data from two large multi-ethnic studies.  

 

Figure 1: Overall study methodology. Using TOPMed MESA as a training dataset, we built 

population-based transcriptome prediction models using three different methods (Elastic Net, 

Matrix eQTL, and Multivariate adaptive shrinkage). With these transcriptome models, we 

evaluated their out-of-sample transcriptome prediction accuracy using the GEUVADIS 

dataset. Additionally, we assessed their applicability in multi-ethnic TWAS using GWAS 

summary statistics from the PAGE Study and PanUKBB. AFA = African American, CHN = 

Chinese, EUR = European, HIS = Hispanic/Latino. 
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METHODS 

Publication disclaimer 

Part of this work is available as a preprint at bioRxiv (doi.org/10.1101/2023.02.09.527747) 

and is under review for publication with the following authors: 

Daniel S. Araujo1, Chris Nguyen2, Xiaowei Hu3, Anna V. Mikhaylova4, Chris Gignoux5, 

Kristin Ardlie6, Kent D. Taylor7, Peter Durda8, Yongmei Liu9, George Papanicolaou10, 

Michael H. Cho11, Stephen S. Rich3, Jerome I. Rotter7, NHLBI TOPMed Consortium, Hae 

Kyung Im12, Ani Manichaikul3, Heather E. Wheeler1,2,* 

1Program in Bioinformatics, Loyola University Chicago, Chicago, IL, 60660, USA; 

2Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA; 3Center for 

Public Health Genomics, Department of Public Health Sciences, University of Virginia, 

Charlottesville, VA, 22908, USA; 4Department of Biostatistics, University of Washington, 

Seattle, WA, 98195, USA; 5Division of Biomedical Informatics and Personalized Medicine, 

Department of Medicine, UC Denver Anschutz Medical Campus, Aurora, CO, 80045, USA; 

6Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA; 7The Institute for 

Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist 

Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, 90502, 

USA; 8Laboratory for Clinical Biochemistry Research, University of Vermont, Colchester, 

VT, 05446, USA; 9Department of Medicine, Duke University School of Medicine, Durham, 
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NC, 27710, USA; 10Epidemiology Branch, Division of Cardiovascular Sciences, National 

Heart, Lung and Blood Institute, Bethesda, MD, 20892, USA; 11Channing Division of 

Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 

02115, USA; 12Section of Genetic Medicine, The University of Chicago, Chicago, IL, 60637, 

USA. 

Training dataset 

To build our transcriptome prediction models, we used data from the Multi-Ethnic 

Study of Atherosclerosis (MESA) multi-omics pilot study of the NHLBI Trans-Omics for 

Precision Medicine (TOPMed) consortium (Bild et al. 2002). This data set includes 

genotypes derived from whole genome sequencing and transcripts per million (TPM) values 

derived from RNA-Seq for individuals of four different populations – African American 

(AFA), Chinese (CHN), European (EUR), and Hispanic/Latino (HIS) – for three different 

blood cell types: peripheral blood mononuclear cells (PBMC, ALL n = 1287, AFA n = 334, 

CHN n = 104, EUR n = 528, HIS n= 321), CD16+ monocytes (Mono, ALL n = 395, AFA n  

= 75, EUR n = 221, HIS n = 99), and CD4+ T-cells (T cells, ALL n = 397, AFA n = 75, EUR 

n = 224, HIS n = 98).   

Genotype and RNA-Seq QC 

We performed QC on each MESA tissue-population pair separately. For the genotype 

data (Freeze 8, phs001416.v2.p1), we excluded INDELs, multi-allelic SNPs, and ambiguous-

strand SNPs (A/T, C/G), and removed the remaining variants with minor allele frequency 

(MAF) < 0.01 and Hardy-Weinberg equilibrium (HWE) p < 1 x 10-6 using PLINK v1.9 

(Purcell et al. 2007). For chromosome X, filtering by HWE was only applied in variants 

found within the pseudoautosomal regions based on GRCh38 positions. Furthermore, for the 

non-pseudoautosomal region of X, male dosages were assigned either 0 or 2. After QC, the 
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numbers of non-ambiguous SNPs remaining were: AFA = 15.7M; CHN = 8.4M; EUR = 

9.7M; HIS = 13.2M. 

For the RNA-Seq data, we also performed QC separately by tissue-population. First, we 

removed genes with average TPM values < 0.1. For some individuals, RNA expression levels 

were measured at two different time points (Exam 1 and Exam 5); thus, after log-

transforming each measurement and adjusting for age and sex as covariates, we took the 

mean of the two time points (or the single adjusted log-transformed value, if expression 

levels were only measured once), performed rank-based inverse normal transformation, and 

adjusted for the first 10 genotype and 10 expression PCs. To estimate genotype and 

expression principal components, we used PC-AiR, which accounts for sample relatedness, 

known or not (Conomos, Miller, and Thornton 2015). For each tissue, we removed genes 

absent in at least one population. After QC, we had 17,585 genes in PBMC, 14,503 in Mono, 

and 16,647 in T cells. 

Gene Expression Cis-Heritability Estimation 

We estimated gene expression heritability (h2) using cis-SNPs within the 1Mb region 

upstream of the transcription start site and 1Mb region downstream of the transcription end 

site. Using the genotype data filtered only by HWE P-value > 1 x 10-6, for each tissue-

population pair, we first performed LD-pruning with a 500 variants count window, a 50 

variants count step, and a 0.2 r2 threshold using PLINK v1.9 (Purcell et al. 2007). Then, for 

each gene, we extracted cis-SNPs and excluded SNPs with MAF < 0.01. Finally, to assess 

cis-SNP expression heritability, we estimated the genetic relationship matrix and h2 using 

GCTA-GREML with the “--reml-no-constrain” option (Yang et al. 2010). We considered a 

gene heritable if it had a positive h2 estimate (h2 - 2*S.E.  > 0.01 and p-value < 0.05) in at 

least one MESA population. In total, 9,206 genes were heritable in PBMC, 3,804 in Mono, 
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and 4,053 in T cells. Only these genes are included in the final models and were analyzed in 

the results. 

Transcriptome Prediction Models 

With the aforementioned genotype and gene expression data, we built transcriptome 

prediction models for each MESA tissue-population pair, and for each gene we considered 

cis-SNPs as defined in the previous section. Additionally, we only considered SNPs present 

in the GWAS summary statistics of the Population Architecture using Genomics and 

Epidemiology (PAGE) study to build our prediction models (Wojcik et al. 2019). This step is 

important to make sure that there would be a high overlap between SNPs in the transcriptome 

models and SNPs in the GWAS summary statistics. After merging with PAGE SNPs, the 

average numbers of SNPs left in our dataset were: AFA = 12.8M; CHN = 6.2M; EUR = 

7.4M; HIS = 10.5M.  

We built our population-based models using three different approaches. The first one 

consists of a cross-validated elastic-net (EN) regression using the glmnet package in R, with 

mixing parameter α = 0.5 (Zou and Hastie 2005; Friedman, Hastie, and Tibshirani 2010). We 

considered EN as our baseline model, as it has been previously used to make transcriptome 

prediction models for TOPMed MESA data (Mogil et al. 2018).   

The second method implemented was mash (Multivariate Adaptive Shrinkage) in R 

(MASHR) (Urbut et al. 2019). Unlike EN, MASHR does not estimate weights by itself; 

rather, it takes zscore (or weight and standard error) matrices as input and adjusts them based 

on correlation patterns present in the data, allowing for both shared and population-specific 

effects. We ran MASHR for each gene at a time, using cis-SNPs weights estimated by Matrix 

eQTL and MESA populations as different conditions (Figure 2A) (Shabalin 2012). Then, we 

split MASHR-adjusted weights according to their respective populations, and selected the top 
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SNP (lowest local false sign rate) per gene to determine which SNPs would end up in the 

final models (Figure 2B). In order to make population-based models, we used population-

specific effect sizes, taken from the corresponding MASHR output matrices. 

 

Figure 2: Design of the methodology implemented to make MASHR models. (A) Using 

effect sizes estimated using Matrix eQTL within each population dataset, we combined them 

across genes, with the different populations as conditions, to use as input for MASHR. The 

output matrixes contain adjusted effect sizes. (B) For each population, we selected the top 

SNP (lowest local false sign rate) per gene. Then, we concatenated the Gene-top SNP pairs 

across populations to determine which SNPs would end up in the final models. Lastly, to 

make our population-based transcriptome prediction models, we used population-specific 

effect sizes, taken from the corresponding MASHR output matrices. AFA = African 

American, CHN = Chinese, EUR = European, HIS = Hispanic/Latino.  

 

The third and last method was based on the effect sizes estimated by Matrix eQTL 

using the linear regression model (Shabalin 2012). We used the same approach taken to build 

the MASHR models, but the key difference is that we made the models using the unadjusted 

effect sizes.  
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Assessing Transcriptome Prediction Performance 

To evaluate the gene expression prediction performance of all our transcriptome 

prediction models, we used DNA and lymphoblastoid cell lines RNA-Seq data from 449 

individuals in the Geuvadis study (Lappalainen et al. 2013). Individuals within the testing 

dataset belong to five different populations (Utah residents with Northern and Western 

European ancestry (CEU), n = 91; Finnish in Finland (FIN), n = 92; British in England and 

Scotland (GBR), n = 86; Toscani in Italy (TSI), n = 91; Yoruba in Ibadan, Nigeria (YRI), n = 

89), which we analyzed both separately and together (ALL). As with our training dataset, we 

performed rank-based inverse normal transformation on the gene expression levels and 

adjusted for the first 10 genotype and 10 expression PCs. With the Geuvadis genotype data 

and our transcriptome prediction models, we used PrediXcan to estimate gene expression 

levels, and compared the estimated values to the adjusted, measured expression levels using 

Spearman correlation (Gamazon et al. 2015).  

Applications in Association Studies 

To test the applicability of our transcriptome prediction models in multi-ethnic 

association studies, we applied S-PrediXcan to GWAS summary statistics from the 

Population Architecture using Genomics and Epidemiology (PAGE) study (Barbeira et al. 

2018; Wojcik et al. 2019). The PAGE study consists of different phenotypes tested for 

association with variants within a multi-ethnic, non-European cohort of 49,839 individuals 

(Hispanic/Latino [n=22,216], African American [n=17,299], Asian [n=4,680], Native 

Hawaiian [n=3,940], Native American [n=652] or Other [n=1,052]). The phenotypes 

investigated are included in the next table (Table 1).  
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Table 1. Matched PAGE and PanUKBB phenotypes.  

PAGE Phenotypes PanUKBB Phenotypes 

Body mass index Calculated or estimated 

body mass index 

Coffee consumption Coffee intake 

C-reactive protein levels C-reactive protein 

Diastolic blood pressure Automated or manual 

diastolic blood pressure 

End-stage renal disease End-stage renal disease 

Estimated glomerular 

filtration rate 

Glomerular filtration rate 

serum creatinine, glomerular 

filtration rate cystain C, 

glomerular filtration rate 

serum creatinine and cystain 

C 

Fasting blood glucose Fasting blood glucose, 

impaired or not 

HDL cholesterol levels HDL cholesterol levels 

Height Sitting or standing height 

Hemoglobin A1c levels Hemoglobin A1c 

Hypertension Hypertension or non-cancer 

hypertension 

LDL cholesterol levels LDL cholesterol levels 

Mean corpuscular 

hemoglobin concentration 

Mean corpuscular 

hemoglobin 

Platelet count Platelet count 

PR interval PR interval 

QRS duration QRS duration 

Smoking behavior Smoking behavior 

Systolic blood pressure Automated or manual 

systolic blood pressure 

Total cholesterol levels Total cholesterol levels 

Triglyceride levels Triglyceride levels 

Type II diabetes Type II diabetes 

Waist-to-rip ratio Waist-hip ratio hip 

circumference, waist-hip 

ratio waist circumference 

White blood cell count White blood cell count 

 

Since we tested multiple phenotypes and transcriptome prediction models, we 

considered genes significantly associated with a phenotype if the association p-value was less 

than the Bonferroni corrected GWAS significance threshold of 5e-8.  
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To replicate the associations found in PAGE, we also applied S-PrediXcan to 

PanUKBB GWAS summary statistics (N=441,331; European [n=420,531], Central/South 

Asian [n=8,876], African [n=6,636], East Asian [n=2,709], Middle Eastern [n=1,599] or 

Admixed American [n=980]) (Barbeira et al. 2018; Pan UKBB Team 2022). For similarity 

purposes, we selected summary statistics of phenotypes that overlap with the ones tested in 

PAGE (Table 1). As previously described, a gene-trait pair association was considered 

significant if its p-value was less than the Bonferroni corrected GWAS significance threshold 

of 5e-8. Furthermore, we deemed significant gene-trait pair associations as replicated if they 

were detected by the same MESA tissue-population model and had the same direction of 

effect in PAGE and PanUKBB. To assess if the gene-trait association pairs reported in our 

study are novel or not, we compared them to studies found in the GWAS Catalog (All 

associations v1.0.2 file downloaded on 11/9/2022) (Buniello et al. 2019). 
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RESULTS 

Publication disclaimer 

Part of this work is available as a preprint at bioRxiv (doi.org/10.1101/2023.02.09.527747) 

and is under review for publication.  

Increased Sample Sizes Improve Gene Expression Cis-Heritability Estimation 

With the goal of improving transcriptome prediction in diverse populations, we first 

determined which gene expression traits were heritable and thus amenable to genetic 

prediction, using genome-wide genotype and RNA-Seq data from three blood cell types 

(PBMCs, monocytes, T cells) in TOPMed MESA. We estimated cis-heritability (h²) using 

data from four different populations (African American - AFA, Chinese - CHN, European - 

EUR, and Hispanic/Latino - HIS). Variation in h² estimation between populations is expected 

due to differences in allele frequencies and LD patterns; however, we show that larger 

population sample sizes yield more h² estimates with p < 0.05 (Figure 3). For instance, with 

the EUR dataset (n = 528), we estimated h² for 10,228 genes, however, we estimated h² for 

8,765 genes using the AFA dataset (n = 334) (Figure 3A). Moreover, we see a great impact 

on the CHN population, which has the smallest sample size. For that population, we managed 

to estimate h² for only 3,448 genes. The same pattern repeats when counting only the 

heritable genes (h² 95% confidence interval lower bound > 0.01). In EUR, 6,902 genes were 

deemed heritable, whereas in AFA and CHN the number of heritable genes is 5,537 and 

1,367, respectively (Figure 3B). Thus, larger sample sizes are needed to better pinpoint h² 

estimates, especially in non-European populations. In total, analyzing the union across all 
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populations’ results, we detected 9,206 heritable genes in PBMCs, 3,804 in monocytes, and 

4,053 in T Cells.  

 

Figure 3: PBMC gene expression cis-heritability estimates across MESA populations. (A) 

Gene expression cis-heritability (h²) estimated for different genes across different MESA 

population datasets. Only genes with significant estimated h² (p-value < 0.05) are shown. 
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Gray bars represent the standard errors (2*S.E.). Genes are ordered on the x-axis in ascending 

h² order, and colored according to the h² lower bound (h² - 2*S.E.). (B) Number of significant 

heritable genes (p-value < 0.05 and h² lower bound > 0.01) within each population dataset, by 

sample size. AFA = African American, CHN = Chinese, EUR = European, HIS = 

Hispanic/Latino.  

MASHR Models Improve Cross-Population Prediction Performance 

To improve TWAS power for discovery and replication across all populations, we 

sought to improve cross-population transcriptome prediction accuracy. For this, we used data 

from four different populations and built gene expression prediction models using three 

different methods (Elastic Net (EN), Matrix eQTL, and multivariate adaptive shrinkage in R 

(MASHR)). We chose EN as a baseline approach for comparison in our analysis, as it has 

been previously shown to have better performance than other common machine learning 

methods such as random forest, K-nearest neighbor, and support vector regression (Okoro et 

al. 2021). Matrix eQTL estimates univariate effect sizes for each cis-SNP-gene relationship 

and we developed an algorithm to include top SNPs from each population, but population-

estimated effect sizes in each population’s model. Matrix eQTL effect sizes are the input for 

MASHR, which we hypothesized might better estimate cross-population effect sizes, due to 

its flexibility in allowing both shared and population-specific effects (Urbut et al. 2019; 

Barbeira et al. 2020). By filtering our models to include only genes with positive h² (h² lower 

bound > 0.01) in at least one population, we saw that among all methods used, we obtained 

more gene models in MatrixeQTL and MASHR in comparison to EN, especially in the CHN 

population model (Figure 4A). Specifically for chromosome X, EN models contained a low 

number of chrX genes for every population on average across all cell types analyzed 

(AFA=12, CHN=23, EUR=13, HIS=14). In comparison, both MatrixeQTL and MASHR had 

over 100 chrX genes for every population model on average across all cell types analyzed 
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(MatrixeQTL: AFA=111, CHN=191, EUR=108, HIS=111; MASHR: AFA=107, CHN=187, 

EUR=108, HIS=108). 

 

Figure 4: Comparison of MESA population transcriptome prediction models. (A) The number 

of genes in each MESA population model, by method and tissue. (B) Prediction performance 

(Spearman’s rho) of MASHR and EN PBMC MESA population models in Geuvadis GBR 
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and YRI populations. Only genes with expression predicted by both methods for each 

MESA-Geuvadis population pair are shown. Differences in performance assessed through 

Wilcoxon rank sum tests; ns = not significant, *** =  p-value ≤ 0.001, **** = p-value ≤ 

0.0001.  

 

To evaluate model performance at population-matched and cross-population 

transcriptome predictions, we used data from the Geuvadis study, which comprises 

individuals of West African or European descent. We defined “population-matched 

predictions” as the scenarios in which the transcriptome model MESA training data and 

Geuvadis test data have the closest genetic distance with available data, and we defined 

“cross-population predictions” as any other pairs (Figure 5).  

 

Figure 5: Genotype principal component analysis. Plot of the first two principal components 

of TOPMed MESA populations with Geuvadis populations. AFA = African American 

(TOPMed), CEU = Utah residents with Northern and Western European ancestry (Geuvadis), 

CHN = Chinese (TOPMed), EUR = European (TOPMed), FIN = Finnish in Finland 
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(Geuvadis), GBR = British in England and Scotland (Geuvadis), HIS = Hispanic/Latino 

(TOPMed), TSI = Toscani in Italy (Geuvadis), YRI = Yoruba in Ibadan, Nigeria (Geuvadis). 

 

Focusing on Geuvadis GBR and YRI populations, which have similar sample sizes and 

are of distinct continental ancestries, we observed that MASHR models significantly 

outperform EN models in cross-population transcriptome predictions, considering genes with 

expression predicted by both methods, as seen in the AFA-GBR and EUR-YRI MESA-

Geuvadis populations pairs (Figure 4B). We also see a higher prediction performance by the 

CHN and HIS MASHR models in comparison to EN, regardless of the Geuvadis population 

analyzed. However, in population-matched scenarios (AFA-YRI and EUR-GBR), prediction 

performance does not significantly differ between MASHR and EN methods. Similar results 

were obtained when comparing Matrix eQTL and EN (Figure 6A). Regarding MASHR and 

Matrix eQTL models, both methods perform the same in almost all cases, except for EUR-

YRI and all CHN predictions, in which MASHR performed better (Figure 6B).  

Overall, across all Geuvadis populations, MASHR models either performed better or 

the same as EN and MatrixeQTL models in both population-matched or cross-population 

transcriptome prediction scenarios (Table 2).   
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Figure 6: Prediction performance of MESA population models in Geuvadis GBR and YRI 

populations. (A) Prediction performance (Spearman’s rho) of EN and MatrixeQTL PBMC 

MESA population models in Geuvadis GBR and YRI populations. Only genes with 

expression predicted by both methods for each MESA-Geuvadis population pair are shown. 

Differences in performance assessed through Wilcoxon rank sum tests; ns = not significant, 

** = p-value ≤ 0.01, **** = p-value ≤ 0.0001. (B) Prediction performance (Spearman’s rho) 

of MASHR and MatrixeQTL PBMC MESA population models in Geuvadis GBR and YRI 

populations. Only genes with expression predicted by both methods for each MESA-

Geuvadis population pair are shown. Differences in performance assessed through Wilcoxon 

rank sum tests; ns = not significant, **** = p-value ≤ 0.0001.  

 

Table 2. Median gene expression prediction performance (Spearman’s rho) of TOPMed 

MESA models in Geuvadis.  

Tissue Method MESA 

Population 

Geuvadis 

population 

# of 

Genes 

Median 

Spearman’s rho 

Mono EN AFA ALL 2542 0.0343 

Mono EN AFA CEU 2437 0.0447 

Mono EN AFA FIN 2438 0.0423 

Mono EN AFA GBR 2434 0.0563 

Mono EN AFA TSI 2442 0.0472 

Mono EN AFA YRI 2536 0.0525 

Mono EN EUR ALL 3436 0.0966 

Mono EN EUR CEU 3434 0.1041 

Mono EN EUR FIN 3433 0.1171 

Mono EN EUR GBR 3434 0.1239 

Mono EN EUR TSI 3435 0.1082 

Mono EN EUR YRI 3414 0.0647 

Mono EN HIS ALL 2869 0.0643 

Mono EN HIS CEU 2841 0.0766 

Mono EN HIS FIN 2836 0.0852 

Mono EN HIS GBR 2842 0.0912 

Mono EN HIS TSI 2846 0.0797 

Mono EN HIS YRI 2839 0.0575 

Mono MASHR AFA ALL 3559 0.0905 

Mono MASHR AFA CEU 3520 0.0962 

Mono MASHR AFA FIN 3509 0.1056 

Mono MASHR AFA GBR 3518 0.1144 

Mono MASHR AFA TSI 3525 0.1030 

Mono MASHR AFA YRI 3461 0.0805 

Mono MASHR EUR ALL 3559 0.1028 
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Mono MASHR EUR CEU 3525 0.1084 

Mono MASHR EUR FIN 3514 0.1195 

Mono MASHR EUR GBR 3524 0.1286 

Mono MASHR EUR TSI 3531 0.1148 

Mono MASHR EUR YRI 3453 0.0787 

Mono MASHR HIS ALL 3525 0.1015 

Mono MASHR HIS CEU 3490 0.1056 

Mono MASHR HIS FIN 3479 0.1166 

Mono MASHR HIS GBR 3489 0.1282 

Mono MASHR HIS TSI 3496 0.1142 

Mono MASHR HIS YRI 3426 0.0807 

Mono MatrixeQTL AFA ALL 3663 0.0715 

Mono MatrixeQTL AFA CEU 3543 0.0823 

Mono MatrixeQTL AFA FIN 3528 0.0926 

Mono MatrixeQTL AFA GBR 3537 0.0992 

Mono MatrixeQTL AFA TSI 3540 0.0880 

Mono MatrixeQTL AFA YRI 3629 0.0726 

Mono MatrixeQTL EUR ALL 3650 0.0918 

Mono MatrixeQTL EUR CEU 3637 0.1014 

Mono MatrixeQTL EUR FIN 3618 0.1127 

Mono MatrixeQTL EUR GBR 3636 0.1188 

Mono MatrixeQTL EUR TSI 3638 0.1042 

Mono MatrixeQTL EUR YRI 3418 0.0724 

Mono MatrixeQTL HIS ALL 3666 0.0853 

Mono MatrixeQTL HIS CEU 3607 0.0923 

Mono MatrixeQTL HIS FIN 3245 0.1186 

Mono MatrixeQTL HIS GBR 3607 0.1179 

Mono MatrixeQTL HIS TSI 3608 0.0997 

Mono MatrixeQTL HIS YRI 3581 0.0688 

PBMC EN AFA ALL 8115 0.0726 

PBMC EN AFA CEU 7983 0.0725 

PBMC EN AFA FIN 7972 0.0856 

PBMC EN AFA GBR 7979 0.0916 

PBMC EN AFA TSI 8002 0.0811 

PBMC EN AFA YRI 8102 0.0996 

PBMC EN CHN ALL 5578 0.0361 

PBMC EN CHN CEU 5506 0.0450 

PBMC EN CHN FIN 5541 0.0518 

PBMC EN CHN GBR 5499 0.0561 

PBMC EN CHN TSI 5515 0.0488 
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PBMC EN CHN YRI 5488 0.0323 

PBMC EN EUR ALL 8312 0.0925 

PBMC EN EUR CEU 8310 0.0948 

PBMC EN EUR FIN 8298 0.1121 

PBMC EN EUR GBR 8308 0.1175 

PBMC EN EUR TSI 8307 0.1062 

PBMC EN EUR YRI 8242 0.0636 

PBMC EN HIS ALL 8161 0.0810 

PBMC EN HIS CEU 8096 0.0830 

PBMC EN HIS FIN 8083 0.0991 

PBMC EN HIS GBR 8087 0.1069 

PBMC EN HIS TSI 8095 0.0892 

PBMC EN HIS YRI 8127 0.0818 

PBMC MASHR AFA ALL 8642 0.0943 

PBMC MASHR AFA CEU 8410 0.0919 

PBMC MASHR AFA FIN 8378 0.1116 

PBMC MASHR AFA GBR 8393 0.1161 

PBMC MASHR AFA TSI 8434 0.1050 

PBMC MASHR AFA YRI 8452 0.0915 

PBMC MASHR CHN ALL 8625 0.0876 

PBMC MASHR CHN CEU 8398 0.0860 

PBMC MASHR CHN FIN 8366 0.1051 

PBMC MASHR CHN GBR 8381 0.1111 

PBMC MASHR CHN TSI 8422 0.0959 

PBMC MASHR CHN YRI 8434 0.0845 

PBMC MASHR EUR ALL 8618 0.0958 

PBMC MASHR EUR CEU 8391 0.0946 

PBMC MASHR EUR FIN 8359 0.1147 

PBMC MASHR EUR GBR 8374 0.1188 

PBMC MASHR EUR TSI 8415 0.1082 

PBMC MASHR EUR YRI 8428 0.0895 

PBMC MASHR HIS ALL 8628 0.0956 

PBMC MASHR HIS CEU 8401 0.0930 

PBMC MASHR HIS FIN 8369 0.1135 

PBMC MASHR HIS GBR 8384 0.1191 

PBMC MASHR HIS TSI 8425 0.1065 

PBMC MASHR HIS YRI 8437 0.0902 

PBMC MatrixeQTL AFA ALL 8733 0.0846 

PBMC MatrixeQTL AFA CEU 8527 0.0843 

PBMC MatrixeQTL AFA FIN 8519 0.1002 
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PBMC MatrixeQTL AFA GBR 8528 0.1072 

PBMC MatrixeQTL AFA TSI 8547 0.0949 

PBMC MatrixeQTL AFA YRI 8662 0.0905 

PBMC MatrixeQTL CHN ALL 8331 0.0656 

PBMC MatrixeQTL CHN CEU 8203 0.0717 

PBMC MatrixeQTL CHN FIN 8250 0.0849 

PBMC MatrixeQTL CHN GBR 8193 0.0883 

PBMC MatrixeQTL CHN TSI 8211 0.0781 

PBMC MatrixeQTL CHN YRI 8058 0.0615 

PBMC MatrixeQTL EUR ALL 8687 0.0886 

PBMC MatrixeQTL EUR CEU 8666 0.0910 

PBMC MatrixeQTL EUR FIN 8640 0.1074 

PBMC MatrixeQTL EUR GBR 8660 0.1102 

PBMC MatrixeQTL EUR TSI 8670 0.1018 

PBMC MatrixeQTL EUR YRI 8312 0.0755 

PBMC MatrixeQTL HIS ALL 8721 0.0887 

PBMC MatrixeQTL HIS CEU 8609 0.0868 

PBMC MatrixeQTL HIS FIN 8601 0.1059 

PBMC MatrixeQTL HIS GBR 8610 0.1111 

PBMC MatrixeQTL HIS TSI 8620 0.0997 

PBMC MatrixeQTL HIS YRI 8602 0.0851 

Tcell EN AFA ALL 2601 0.0371 

Tcell EN AFA CEU 2499 0.0471 

Tcell EN AFA FIN 2500 0.0534 

Tcell EN AFA GBR 2503 0.0619 

Tcell EN AFA TSI 2511 0.0554 

Tcell EN AFA YRI 2584 0.0616 

Tcell EN EUR ALL 3645 0.1221 

Tcell EN EUR CEU 3643 0.1233 

Tcell EN EUR FIN 3640 0.1436 

Tcell EN EUR GBR 3643 0.1520 

Tcell EN EUR TSI 3643 0.1446 

Tcell EN EUR YRI 3610 0.0811 

Tcell EN HIS ALL 3002 0.0761 

Tcell EN HIS CEU 2973 0.0821 

Tcell EN HIS FIN 2959 0.1045 

Tcell EN HIS GBR 2966 0.1026 

Tcell EN HIS TSI 2972 0.0927 

Tcell EN HIS YRI 2959 0.0654 

Tcell MASHR AFA ALL 3713 0.1102 
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Tcell MASHR AFA CEU 3669 0.1112 

Tcell MASHR AFA FIN 3669 0.1321 

Tcell MASHR AFA GBR 3677 0.1390 

Tcell MASHR AFA TSI 3682 0.1277 

Tcell MASHR AFA YRI 3622 0.0933 

Tcell MASHR EUR ALL 3727 0.1243 

Tcell MASHR EUR CEU 3693 0.1248 

Tcell MASHR EUR FIN 3693 0.1527 

Tcell MASHR EUR GBR 3699 0.1546 

Tcell MASHR EUR TSI 3703 0.1414 

Tcell MASHR EUR YRI 3628 0.0940 

Tcell MASHR HIS ALL 3692 0.1211 

Tcell MASHR HIS CEU 3657 0.1221 

Tcell MASHR HIS FIN 3657 0.1465 

Tcell MASHR HIS GBR 3663 0.1491 

Tcell MASHR HIS TSI 3667 0.1369 

Tcell MASHR HIS YRI 3602 0.0951 

Tcell MatrixeQTL AFA ALL 3865 0.0869 

Tcell MatrixeQTL AFA CEU 3736 0.0933 

Tcell MatrixeQTL AFA FIN 3734 0.1126 

Tcell MatrixeQTL AFA GBR 3747 0.1188 

Tcell MatrixeQTL AFA TSI 3747 0.1075 

Tcell MatrixeQTL AFA YRI 3809 0.0731 

Tcell MatrixeQTL EUR ALL 3848 0.1125 

Tcell MatrixeQTL EUR CEU 3833 0.1163 

Tcell MatrixeQTL EUR FIN 3826 0.1397 

Tcell MatrixeQTL EUR GBR 3840 0.1459 

Tcell MatrixeQTL EUR TSI 3839 0.1285 

Tcell MatrixeQTL EUR YRI 3608 0.0800 

Tcell MatrixeQTL HIS ALL 3856 0.1040 

Tcell MatrixeQTL HIS CEU 3806 0.1105 

Tcell MatrixeQTL HIS FIN 3804 0.1301 

Tcell MatrixeQTL HIS GBR 3813 0.1348 

Tcell MatrixeQTL HIS TSI 3821 0.1230 

Tcell MatrixeQTL HIS YRI 3734 0.0765 
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Leveraging Effect Sizes Across Different Populations Improves Discovery Rate in 

Multi-Ethnic TWAS 

In order to investigate the applicability of the models we built in multi-ethnic TWAS, we 

used S-PrediXcan with GWAS summary statistics of complex traits from PAGE and 

PanUKBB. We show that across all tissue-population models, MASHR identified the highest 

number of gene-trait pair associations (208) that replicated in both PAGE and PanUKBB (P < 

5e-8), followed by Matrix eQTL (173) and EN (94). Specifically for chromosome X, no EN 

model detected chrX genes-trait pair associations. In opposition to that, both MatrixeQTL and 

MASHR identified 5 chrX genes (AVPR2, DNASE1L1, EMD, MECP2, RENBP) associated to 

hemoglobin A1c levels. In addition to the aforementioned genes, MatrixeQTL also identified 

VBP1 levels associated to hemoglobin A1c levels. Moreover, MASHR models were often the 

ones that reported a given association with the lowest p-value among all methods tested 

(Table 3). For instance, across 72 distinct gene-trait pairs associations found, MASHR had 

the lowest p-values for 39 of them (5 on chrX), followed by EN (20, 0 on chrX) and Matrix 

eQTL (13, 1 on chrX).  

Table 3. All unique gene-trait association pairs that replicated in both PAGE and PanUKBB 

with same direction of effect, with the corresponding model that detected the association with 

the lowest p-value. 

Gene Phenotype PAGE p-

value 

PanUKBB 

p-value 

Model 

ATP8B2 C-reactive protein 8.06E-12 6.91E-63 MatrixeQTL-HIS 

AVPR2 Hemoglobin A1c 1.45E-42 2.85E-91 MASHR-AFA 

BAK1 Platelet count 8.87E-25 4.80E-43 EN-AFA 

BUD13 HDL 2.22E-08 9.32E-49 MASHR-AFA 

BUD13 Triglycerides 5.65E-26 3.59E-108 MASHR-AFA 

BUD23 Triglycerides 4.06E-13 5.71E-14 MatrixeQTL-AFA 

C12orf43 C-reactive protein 1.95E-11 9.01E-133 MASHR-AFA 

CAD Triglycerides 2.84E-16 3.73E-32 MASHR-AFA 

CBL Platelet count 8.18E-09 8.72E-146 MASHR-EUR 
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CETP Total cholesterol 7.70E-09 2.22E-57 MatrixeQTL-HIS 

DNASE1L1 Hemoglobin A1c 3.99E-31 3.54E-49 MASHR-AFA 

DOCK7 LDL 1.05E-08 2.97E-69 EN-AFA 

DOCK7 Total cholesterol 6.88E-18 7.02E-141 EN-AFA 

DOCK7 Triglycerides 2.07E-21 6.48E-304 EN-AFA 

DPEP2 HDL 4.33E-11 1.12E-70 EN-EUR 

DPEP3 HDL 1.15E-09 8.39E-58 MASHR-AFA 

EMD Hemoglobin A1c 1.92E-08 5.41E-10 MASHR-AFA 

FADS1 LDL 9.47E-09 3.76E-28 MatrixeQTL-AFA 

FADS1 Triglycerides 4.42E-08 5.99E-67 MatrixeQTL-AFA 

FADS2 LDL 9.33E-12 1.65E-39 MASHR-CHN 

FADS2 Triglycerides 2.70E-08 1.51E-58 MASHR-AFA 

FCER1A WBC count 4.49E-88 7.39E-17 MatrixeQTL-AFA 

FCGR3B WBC count 1.39E-10 8.31E-09 EN-HIS 

FN3K Hemoglobin A1c 5.32E-09 1.90E-82 EN-AFA 

GFOD2 HDL 4.90E-08 6.96E-60 EN-EUR 

GSDMA WBC count 2.44E-08 1.29E-240 MASHR-CHN 

GSDMB HDL 4.69E-08 2.53E-20 MatrixeQTL-EUR 

HHIP-AS1 Height 1.76E-09 4.35E-08 EN-AFA 

IL6R C-reactive protein 2.86E-20 1.31E-117 MASHR-AFA 

KANK2 LDL 6.49E-14 1.29E-218 MatrixeQTL-AFA 

KANK2 Total cholesterol 2.88E-10 2.20E-186 MatrixeQTL-AFA 

KRTCAP3 C-reactive protein 3.63E-11 2.66E-116 MASHR-AFA 

KRTCAP3 Fasting blood glucose 8.58E-09 3.29E-36 MASHR-AFA 

KRTCAP3 Total cholesterol 8.46E-14 1.30E-41 MASHR-AFA 

KRTCAP3 Triglycerides 1.16E-15 1.79E-12 EN-AFA 

LA16c-

349E10.1 

Mean corpuscular hemoglobin 1.48E-09 4.42E-27 EN-HIS 

LAMTOR2 WBC count 2.62E-24 3.97E-27 MASHR-AFA 

LCAT HDL 3.05E-08 3.24E-93 MASHR-AFA 

LEPR C-reactive protein 1.69E-10 0 MASHR-CHN 

LMNA WBC countWBC count 3.51E-35 1.00E-21 MASHR-AFA 

LPL HDL 1.80E-10 1.43E-50 EN-EUR 

LPL Triglycerides 2.43E-14 1.90E-10 MASHR-AFA 

MECP2 Hemoglobin A1c 4.38E-08 2.62E-22 MASHR-HIS 

MED24 WBC count 1.10E-17 0 MatrixeQTL-AFA 

MEG3 Platelet count 5.13E-17 2.75E-139 MASHR-AFA 

NRBF2 Platelet count 8.39E-22 7.05E-243 MASHR-AFA 

NRBP1 C-reactive protein 2.80E-10 6.91E-70 MASHR-AFA 

NRBP1 Fasting blood glucose 3.73E-08 2.14E-35 MASHR-AFA 

NRBP1 Total cholesterol 1.35E-13 1.01E-19 MASHR-AFA 

NRBP1 Triglycerides 2.08E-27 1.50E-153 MASHR-AFA 
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PAFAH1B2 Triglycerides 3.25E-14 1.53E-37 MASHR-AFA 

PCSK7 Triglycerides 8.27E-14 2.54E-179 MASHR-CHN 

POC5 Total cholesterol 1.71E-08 1.07E-39 MASHR-AFA 

PSMD3 WBC count 5.30E-21 1.17E-211 MatrixeQTL-AFA 

PSMD9 C-reactive protein 2.55E-10 1.14E-38 EN-AFA 

PSRC1 LDL 1.25E-10 3.11E-12 EN-AFA 

PSRC1 Total cholesterol 8.34E-55 1.97E-264 MASHR-AFA 

RENBP Hemoglobin A1c 2.87E-27 1.81E-44 MASHR-AFA 

SCGB1C1 Platelet count 1.65E-08 8.16E-19 MatrixeQTL-EUR 

SLC5A6 Triglycerides 6.65E-10 1.32E-21 EN-EUR 

TMEM184B C-reactive protein 4.29E-09 1.24E-08 MASHR-AFA 

TMEM258 LDL 4.13E-10 4.15E-22 EN-AFA 

TMEM258 Triglycerides 5.54E-10 2.32E-68 EN-AFA 

TOMM40 C-reactive protein 5.31E-21 1.91E-138 EN-AFA 

TOMM40 HDL 1.66E-11 4.46E-92 EN-AFA 

TOMM40 LDL 3.97E-57 4.11E-16 EN-AFA 

TPM4 Platelet count 1.64E-24 1.29E-142 MASHR-AFA 

UQCC1 Height 1.92E-26 1.85E-11 MASHR-AFA 

VBP1 Hemoglobin A1c 5.08E-54 4.57E-08 MatrixeQTL-HIS 

YJEFN3 Triglycerides 6.07E-16 7.12E-86 MASHR-CHN 

YKT6 Fasting blood glucose 9.62E-23 7.08E-235 MASHR-AFA 

YKT6 Hemoglobin A1c 9.31E-11 2.61E-208 MASHR-AFA 

 

When analyzing the total number of discoveries separately for each population, MASHR had 

the highest number of gene-trait pairs in most population models, with large discrepancies 

found in AFA and CHN models when comparing MASHR and EN (Figure 7A). 

Additionally, when comparing gene-trait pairs, we saw that most MASHR hits were shared 

between population models (Figure 7B), whereas in EN, the models have higher population-

specific discoveries (Figure 7C). These findings suggest that MASHR models show high 

consistency and also suggest that TWAS results are not as affected by the MASHR 

population model used as compared to EN.  
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Figure 7: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 

GWAS summary statistics. (A) Total number of significant gene-trait pairs discovered by 

each MESA population model (considering the union of the three tissues), by method. (B) 

Number of significant gene-trait pairs discovered by MASHR MESA population models 

(considering the union of the three tissues). (C) Number of significant gene-trait pairs 

discovered by EN MESA population models (considering the union of the three tissues).  

 

To contextualize our models’ findings, we investigated whether the discovered gene-

trait pairs had been previously reported in any studies in the GWAS Catalog 

(https://www.ebi.ac.uk/gwas/home). We saw that 19 out of the 72 (26.39%) distinct gene-trait 

association pairs have not been reported in the GWAS Catalog, and therefore may be novel 

https://www.ebi.ac.uk/gwas/home
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associations that require further investigation (Table 4). Out of those potential new biological 

associations, most of them (13) were discovered with MASHR AFA models.  

Table 4. Potentially novel gene-trait associations found in our TWAS and models that 

detected them.  

Gene Phenotype Model 

AVPR2 Hemoglobin A1c MASHR-AFA, MASHR-HIS, MatrixeQTL-

AFA, MatrixeQTL-HIS 

DNASE1L1 Hemoglobin A1c MASHR-AFA, MatrixeQTL-AFA 

EMD Hemoglobin A1c MASHR-AFA, MatrixeQTL-AFA 

FCER1A White blood cell count MatrixeQTL-AFA 

KRTCAP3 C-reactive protein MASHR-AFA, MASHR-CHN, MASHR-

EUR, MASHR-HIS, MatrixeQTL-AFA, 

MatrixeQTL-CHN, MatrixeQTL-EUR, 

MatrixeQTL-HIS 

KRTCAP3 Fasting blood glucose MASHR-AFA, MASHR-CHN, MatrixeQTL-

CHN 

KRTCAP3 Total cholesterol EN-EUR, MASHR-AFA, MASHR-CHN, 

MASHR-EUR, MASHR-HIS, MatrixeQTL-

AFA, MatrixeQTL-CHN, MatrixeQTL-EUR, 

MatrixeQTL-HIS 

LA16c-

3949E10.1 

Mean corpuscular 

hemoglobin 

EN-HIS 

LAMTOR2 White blood cell count EN-EUR, MASHR-AFA, MASHR-EUR, 

MASHR-HIS, MatrixeQTL-EUR, 

MatrixeQTL-HIS 

MECP2 Hemoglobin A1c MASHR-HIS, MatrixeQTL-HIS 

MEG3 Platelet count EN-EUR, EN-HIS, MASHR-AFA, MASHR-

CHN, MASHR-EUR, MASHR-HIS, 

MatrixeQTL-AFA, MatrixeQTL-EUR, 

MatrixeQTL-HIS 

NRBF2 Platelet count EN-AFA, EN-EUR, EN-HIS, MASHR-AFA, 

MASHR-CHN, MASHR-EUR, MASHR-

HIS, MatrixeQTL-AFA, MatrixeQTL-EUR, 

MatrixeQTL-HIS 

NRBP1 C-reactive protein EN-EUR, EN-HIS, MASHR-AFA, MASHR-

EUR, MASHR-HIS, MatrixeQTL-AFA, 

MatrixeQTL-EUR, MatrixeQTL-HIS 

NRBP1 Fasting blood glucose MASHR-AFA, MASHR-EUR, MASHR-

HIS, MatrixeQTL-AFA, MatrixeQTL-EUR, 

MatrixeQTL-HIS 

PSMD9 C-reactive protein EN-AFA 

RENBP Hemoglobin A1c MASHR-AFA, MASHR-HIS, MatrixeQTL-

AFA, MatrixeQTL-HIS 
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TMEM184B C-reactive protein MASHR-AFA 

VBP1 Hemoglobin A1c MatrixeQTL-HIS 

YJEFN3 Triglycerides MASHR-CHN 

 

Furthermore, out of the 53 distinct known GWAS catalog associations discovered, 

MASHR models identified most of them. For instance, MASHR EUR models found 34 

known associations, followed by MASHR AFA with 33, and MatrixeQTL with 32 (Figure 8).  

 

Figure 8: Number of significant S-PrediXcan gene-trait pairs in PAGE and PanUKBB 

GWAS summary statistics that have been reported in the GWAS catalog. Total number of 

significant gene-trait pairs discovered by each MESA population model (considering the 

union of the three tissues), by method.  
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DISCUSSION AND CONCLUSION 

Publication disclaimer 

Part of this work is available as a preprint at bioRxiv (doi.org/10.1101/2023.02.09.527747) 

and is under review for publication.   

In this work, we sought to build population-based transcriptome prediction models for 

TWAS using data from the TOPMed MESA cohort using three distinct approaches. We saw 

that although the AFA and HIS populations' datasets contained the highest numbers of SNPs 

after quality control, EUR yielded the highest number of gene expression traits with 

significant heritability estimates across all tissues analyzed. This is most likely due to the 

higher sample size in EUR (n=528) in comparison to AFA (n=334) and HIS (n=321), as 

larger sample sizes provide higher statistical power to detect eQTLs with smaller effects 

(Aguet et al. 2017). Test data sample size has also been shown to positively correlate with 

gene expression prediction accuracy (Fryett, Morris, and Cordell 2020). 

In addition to sample size, gene expression prediction accuracy is known to be greater 

when the training and testing datasets have similar ancestries (Keys et al. 2020; Mogil et al. 

2018; Fryett, Morris, and Cordell 2020; Mikhaylova and Thornton 2019); however, non-

European ancestries are vastly underrepresented in human genetics studies, which 

compromises the ability to build accurate TWAS models for them (Morales et al. 2018; 

Martin et al. 2019). Thus, using data from the Geuvadis cohort, we evaluated the 

transcriptome prediction performance of our models and found out that MASHR models 

either significantly outperformed EN and MatrixeQTL models, or had similar performance. 
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Previous studies have shown that by borrowing information across different conditions, such 

as tissues or cell types, MASHR identifies shared- or condition-specific eQTLs, which can 

enhance causal gene identification, as well as improve effect size estimation accuracy (Urbut 

et al. 2019; Sheng et al. 2021; Barbeira et al. 2020). Similarly, by leveraging effect size 

estimates across multiple populations, MASHR improved cross-population transcriptome 

prediction without compromising population-matched prediction accuracy.  

Discovery and replication of TWAS associations are also related to the ancestries of 

the transcriptome prediction model training dataset and ancestries of the TWAS sample 

dataset (Geoffroy, Gregga, and Wheeler 2020). Thus, we assessed the applicability of our 

models in TWAS using S-PrediXcan on PAGE and PanUKBB GWAS summary statistics 

and found out that across all tissues and populations, MASHR models yielded the highest 

number of total gene-trait pairs associations, with MASHR AFA reporting the highest 

number. In this manner, it seems that although MASHR improved gene expression prediction 

accuracy for all populations analyzed, using transcriptome prediction models that match the 

ancestries of the GWAS dataset still yields the highest number of TWAS discoveries, which 

is in agreement with many previous works (Geoffroy, Gregga, and Wheeler 2020; Schubert et 

al. 2022; Bhattacharya et al. 2021; 2020; Kachuri et al. 2021). Among the most significant 

gene-trait associations found, most have been previously reported in the GWAS Catalog. 

Examples include MED24 and white blood cell count (PAGE effect size = -0.044, PanUKBB 

effect size = -0.221), who has been previously reported in GWAS conducted with the 

eMERGE and HCHS/SOL cohorts (Crosslin et al. 2012; Jain et al. 2017); LEPR and C-

reactive protein levels (PAGE effect size = 0.506, PanUKBB effect size = 1.054), also 

identified in a large GWAS meta-analysis across over 80,000 individuals (Dehghan et al. 

2011); and DOCK7 and triglyceride levels (PAGE effect size = 3.379, PanUKBB effect size 
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= 8.034), also reported in a multiancestry GWAS meta-analysis across approximately 

400,000 subjects (de Vries et al. 2019).   

Furthermore, by investigating which associations had been previously reported in the 

GWAS Catalog, we saw that most new discoveries were found by MASHR models. In fact, 

one possible novel association reported by MASHR was the fifth most significant 

associations found across all gene-trait pair associations (NRBF2 and platelet count, PAGE 

effect size = -12.119, p-value = 8.38e-22; PanUKBB effect size = -0.199, p-value = 7.054e-

243). The same association was also reported by EN and MatrixeQTL, with the same 

direction of effects but not as significant. Some of these possible new discoveries are unique 

to MASHR models and have been corroborated previously, such as YJEFN3 (also known as 

AIBP2) and triglycerides, whose low expression in zebrafish increases cellular unesterified 

cholesterol levels, consistent with our S-PrediXcan effect size directions (PAGE effect size = 

-0.522, p-value = 6.07e-16; PanUKBB effect size = -0.860, p-value = 7.12e-86) (Fang et al. 

2013). Additionally, we also saw that MASHR models showed higher consistency than EN, 

which means that TWAS results are not as affected by the population model used as EN. 

One limitation of our TWAS is that we used transcriptome prediction models trained 

in PBMCs, monocytes and T cells, and those tissues might not be the most appropriate for 

some phenotypes in PAGE or PanUKBB. Additionally, because of the smaller sample sizes 

for some populations in our training dataset, h² and eQTL effect sizes estimates have large 

standard errors, which may affect the ability of MASHR to adjust effect sizes across different 

conditions based on correlation patterns present in the data. Regardless of that, our results 

mainly demonstrate that we can implement cross-population effect size leveraging using a 

method first applied to do cross-tissue effect size leveraging - and improve cross-population 

transcriptome prediction accuracy in doing so. Thus, increasing sample size for 
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underrepresented populations will improve current MASHR TWAS models’ performances, 

as well as increase genetic diversity in the data. MASHR is most useful when population 

effects are shared, as demonstrated by the more consistent S-PrediXcan results, but 

population-specific effects are also relevant. For instance, a study in a large African 

American and Latino cohort discovered eQTLs only present at appreciable allele frequencies 

in African ancestry populations (Kachuri et al. 2021). Moreover, since our MASHR and 

MatrixeQTL models focus on the top SNPs, we might not be including enough eQTLs in the 

models, especially for those genes whose expression is genetically regulated by multiple 

eQTLs with small effects.  

 In conclusion, our results demonstrate the importance and the benefits of increasing 

ancestry diversity in the field of human genetics, especially regarding association studies. As 

shown, sample size is valuable for assessing gene expression heritability and for accurately 

estimating eQTL effect sizes, and thus some populations are negatively affected due to the 

lack of data. However, by making transcriptome prediction models that leverage effect size 

estimates across different populations using multivariate adaptive shrinkage, we were able to 

increase gene expression prediction performance for scenarios in which the training data and 

test data have distant (“cross-population”) genetic distances with available data. Additionally, 

when applied to multi-ethnic TWAS, the MASHR models yielded more discoveries across all 

methods analyzed, even detecting well-known associations that were not detected by other 

methods. Thus, in order to further improve TWAS in multi-ethnic or underrepresented 

populations and possibly reduce health care disparities, it is necessary to use methods that 

consider shared and population-specific effect sizes, as well as increase available data of 

underrepresented populations.    



 

41 

 

 

 

REFERENCE LIST 

Aguet, François, Andrew A. Brown, Stephane E. Castel, Joe R. Davis, Yuan He, Brian Jo, 

Pejman Mohammadi, et al. 2017. “Genetic Effects on Gene Expression across Human 

Tissues.” Nature 550 (7675): 204–13. https://doi.org/10.1038/nature24277. 

Altshuler, David M., Richard A. Gibbs, Leena Peltonen, David M. Altshuler, Richard A. 

Gibbs, Leena Peltonen, Emmanouil Dermitzakis, et al. 2010. “Integrating Common 

and Rare Genetic Variation in Diverse Human Populations.” Nature 467 (7311): 52–

58. https://doi.org/10.1038/nature09298. 

Barbeira, Alvaro N., Scott P. Dickinson, Rodrigo Bonazzola, Jiamao Zheng, Heather E. 

Wheeler, Jason M. Torres, Eric S. Torstenson, et al. 2018. “Exploring the Phenotypic 

Consequences of Tissue Specific Gene Expression Variation Inferred from GWAS 

Summary Statistics.” Nature Communications 9 (1): 1825. 

https://doi.org/10.1038/s41467-018-03621-1. 

Barbeira, Alvaro N., Owen J. Melia, Yanyu Liang, Rodrigo Bonazzola, Gao Wang, Heather 

E. Wheeler, François Aguet, Kristin G. Ardlie, Xiaoquan Wen, and Hae K. Im. 2020. 

“Fine-Mapping and QTL Tissue-Sharing Information Improves the Reliability of 

Causal Gene Identification.” Genetic Epidemiology 44 (8): 854–67. 

https://doi.org/10.1002/gepi.22346. 

Barbeira, Alvaro N., Milton Pividori, Jiamao Zheng, Heather E. Wheeler, Dan L. Nicolae, 

and Hae Kyung Im. 2019. “Integrating Predicted Transcriptome from Multiple 

Tissues Improves Association Detection.” PLOS Genetics 15 (1): e1007889. 

https://doi.org/10.1371/journal.pgen.1007889. 

Bhattacharya, Arjun, Montserrat García-Closas, Andrew F. Olshan, Charles M. Perou, 

Melissa A. Troester, and Michael I. Love. 2020. “A Framework for Transcriptome-

Wide Association Studies in Breast Cancer in Diverse Study Populations.” Genome 

Biology 21 (1): 42. https://doi.org/10.1186/s13059-020-1942-6. 

Bhattacharya, Arjun, Jibril B. Hirbo, Dan Zhou, Wei Zhou, Jie Zheng, Masahiro Kanai, the 

Global Biobank Meta-analysis Initiative, Bogdan Pasaniuc, Eric R. Gamazon, and 

Nancy J. Cox. 2021. “Best Practices for Multi-Ancestry, Meta-Analytic 

Transcriptome-Wide Association Studies: Lessons from the Global Biobank Meta-

Analysis Initiative.” Preprint. Genetic and Genomic Medicine. 

https://doi.org/10.1101/2021.11.24.21266825. 

Bild, Diane E., David A. Bluemke, Gregory L. Burke, Robert Detrano, Ana V. Diez Roux, 

Aaron R. Folsom, Philip Greenland, et al. 2002. “Multi-Ethnic Study of 



 

42 

Atherosclerosis: Objectives and Design.” American Journal of Epidemiology 156 (9): 

871–81. https://doi.org/10.1093/aje/kwf113. 

Brumpton, Ben M., and Manuel A. R. Ferreira. 2016. “Multivariate EQTL Mapping 

Uncovers Functional Variation on the X-Chromosome Associated with Complex 

Disease Traits.” Human Genetics 135 (7): 827–39. https://doi.org/10.1007/s00439-

016-1674-6. 

Buniello, Annalisa, Jacqueline A L MacArthur, Maria Cerezo, Laura W Harris, James 

Hayhurst, Cinzia Malangone, Aoife McMahon, et al. 2019. “The NHGRI-EBI GWAS 

Catalog of Published Genome-Wide Association Studies, Targeted Arrays and 

Summary Statistics 2019.” Nucleic Acids Research 47 (D1): D1005–12. 

https://doi.org/10.1093/nar/gky1120. 

Campbell, Michael C., and Sarah A. Tishkoff. 2008. “African Genetic Diversity: Implications 

for Human Demographic History, Modern Human Origins, and Complex Disease 

Mapping.” Annual Review of Genomics and Human Genetics 9 (1): 403–33. 

https://doi.org/10.1146/annurev.genom.9.081307.164258. 

Cann, Rebecca L., Mark Stoneking, and Allan C. Wilson. 1987. “Mitochondrial DNA and 

Human Evolution.” Nature 325 (6099): 31–36. https://doi.org/10.1038/325031a0. 

Cano-Gamez, Eddie, and Gosia Trynka. 2020. “From GWAS to Function: Using Functional 

Genomics to Identify the Mechanisms Underlying Complex Diseases.” Frontiers in 

Genetics 11. https://www.frontiersin.org/articles/10.3389/fgene.2020.00424. 

Chakravarti, Aravinda, and Peter Little. 2003. “Nature, Nurture and Human Disease.” Nature 

421 (6921): 412–14. https://doi.org/10.1038/nature01401. 

Clarke, Laura, Susan Fairley, Xiangqun Zheng-Bradley, Ian Streeter, Emily Perry, Ernesto 

Lowy, Anne-Marie Tassé, and Paul Flicek. 2017. “The International Genome Sample 

Resource (IGSR): A Worldwide Collection of Genome Variation Incorporating the 

1000 Genomes Project Data.” Nucleic Acids Research 45 (D1): D854–59. 

https://doi.org/10.1093/nar/gkw829. 

Conomos, Matthew P., Michael B. Miller, and Timothy A. Thornton. 2015. “Robust 

Inference of Population Structure for Ancestry Prediction and Correction of 

Stratification in the Presence of Relatedness.” Genetic Epidemiology 39 (4): 276–93. 

https://doi.org/10.1002/gepi.21896. 

Crosslin, David R., Andrew McDavid, Noah Weston, Sarah C. Nelson, Xiuwen Zheng, 

Eugene Hart, Mariza de Andrade, et al. 2012. “Genetic Variants Associated with the 

White Blood Cell Count in 13,923 Subjects in the EMERGE Network.” Human 

Genetics 131 (4): 639–52. https://doi.org/10.1007/s00439-011-1103-9. 

Dandine-Roulland, Claire, and Hervé Perdry. 2015. “Where Is the Causal Variant? On the 

Advantage of the Family Design over the Case–Control Design in Genetic 

Association Studies.” European Journal of Human Genetics 23 (10): 1357–63. 

https://doi.org/10.1038/ejhg.2014.284. 



 

43 

Dehghan, Abbas, Josée Dupuis, Maja Barbalic, Joshua C. Bis, Gudny Eiriksdottir, Chen Lu, 

Niina Pellikka, et al. 2011. “Meta-Analysis of Genome-Wide Association Studies in 

>80 000 Subjects Identifies Multiple Loci for C-Reactive Protein Levels.” Circulation 

123 (7): 731–38. https://doi.org/10.1161/CIRCULATIONAHA.110.948570. 

Derrida, Bernard, Susanna C. Manrubia, and Damián H. Zanette. 2000. “On the Genealogy of 

a Population of Biparental Individuals.” Journal of Theoretical Biology 203 (3): 303–

15. https://doi.org/10.1006/jtbi.2000.1095. 

Fang, Longhou, Soo-Ho Choi, Ji Sun Baek, Chao Liu, Felicidad Almazan, Florian Ulrich, 

Philipp Wiesner, et al. 2013. “Control of Angiogenesis by AIBP-Mediated 

Cholesterol Efflux.” Nature 498 (7452): 118–22. https://doi.org/10.1038/nature12166. 

Fine, Michael J., Said A. Ibrahim, and Stephen B. Thomas. 2005. “The Role of Race and 

Genetics in Health Disparities Research.” American Journal of Public Health 95 (12): 

2125–28. https://doi.org/10.2105/AJPH.2005.076588. 

Friedman, Jerome H., Trevor Hastie, and Rob Tibshirani. 2010. “Regularization Paths for 

Generalized Linear Models via Coordinate Descent.” Journal of Statistical Software 

33 (1): 1–22. https://doi.org/10.18637/jss.v033.i01. 

Fryett, James J., Andrew P. Morris, and Heather J. Cordell. 2020. “Investigation of Prediction 

Accuracy and the Impact of Sample Size, Ancestry, and Tissue in Transcriptome-

Wide Association Studies.” Genetic Epidemiology 44 (5): 425–41. 

https://doi.org/10.1002/gepi.22290. 

Gamazon, Eric R., Heather E. Wheeler, Kaanan P. Shah, Sahar V. Mozaffari, Keston Aquino-

Michaels, Robert J. Carroll, Anne E. Eyler, et al. 2015. “A Gene-Based Association 

Method for Mapping Traits Using Reference Transcriptome Data.” Nature Genetics 

47 (9): 1091–98. https://doi.org/10.1038/ng.3367. 

Gaziano, John Michael, John Concato, Mary Brophy, Louis Fiore, Saiju Pyarajan, James 

Breeling, Stacey Whitbourne, et al. 2016. “Million Veteran Program: A Mega-

Biobank to Study Genetic Influences on Health and Disease.” Journal of Clinical 

Epidemiology 70 (February): 214–23. https://doi.org/10.1016/j.jclinepi.2015.09.016. 

Geoffroy, Elyse, Isabelle Gregga, and Heather E. Wheeler. 2020. “Population-Matched 

Transcriptome Prediction Increases TWAS Discovery and Replication Rate.” IScience 

23 (12): 101850. https://doi.org/10.1016/j.isci.2020.101850. 

Gibson, Greg. 2008. “The Environmental Contribution to Gene Expression Profiles.” Nature 

Reviews Genetics 9 (8): 575–81. https://doi.org/10.1038/nrg2383. 

Henn, Brenna M, Teresa E Steele, and Timothy D Weaver. 2018. “Clarifying Distinct Models 

of Modern Human Origins in Africa.” Current Opinion in Genetics & Development, 

Genetics of Human Origins, 53 (December): 148–56. 

https://doi.org/10.1016/j.gde.2018.10.003. 



 

44 

International Human Genome Sequencing Consortium. 2004. “Finishing the Euchromatic 

Sequence of the Human Genome.” Nature 431 (7011): 931–45. 

https://doi.org/10.1038/nature03001. 

Jain, Deepti, Chani J. Hodonsky, Ursula M. Schick, Jean V. Morrison, Sharon Minnerath, 

Lisa Brown, Claudia Schurmann, et al. 2017. “Genome-Wide Association of White 

Blood Cell Counts in Hispanic/Latino Americans: The Hispanic Community Health 

Study/Study of Latinos.” Human Molecular Genetics 26 (6): 1193–1204. 

https://doi.org/10.1093/hmg/ddx024. 

Kachuri, Linda, Angel C.Y. Mak, Donglei Hu, Celeste Eng, Scott Huntsman, Jennifer R. 

Elhawary, Namrata Gupta, et al. 2021. “Gene Expression in African Americans and 

Latinos Reveals Ancestry-Specific Patterns of Genetic Architecture.” Preprint. 

Genetics. https://doi.org/10.1101/2021.08.19.456901. 

Keys, Kevin L., Angel C. Y. Mak, Marquitta J. White, Walter L. Eckalbar, Andrew W. Dahl, 

Joel Mefford, Anna V. Mikhaylova, et al. 2020. “On the Cross-Population 

Generalizability of Gene Expression Prediction Models.” PLOS Genetics 16 (8): 

e1008927. https://doi.org/10.1371/journal.pgen.1008927. 

Kichaev, Gleb, Wen-Yun Yang, Sara Lindstrom, Farhad Hormozdiari, Eleazar Eskin, Alkes 

L. Price, Peter Kraft, and Bogdan Pasaniuc. 2014. “Integrating Functional Data to 

Prioritize Causal Variants in Statistical Fine-Mapping Studies.” PLoS Genetics 10 

(10): e1004722. https://doi.org/10.1371/journal.pgen.1004722. 

Kirsten, Holger, Hoor Al-Hasani, Lesca Holdt, Arnd Gross, Frank Beutner, Knut Krohn, 

Katrin Horn, et al. 2015. “Dissecting the Genetics of the Human Transcriptome 

Identifies Novel Trait-Related Trans-EQTLs and Corroborates the Regulatory 

Relevance of Non-Protein Coding Loci.” Human Molecular Genetics 24 (16): 4746–

63. https://doi.org/10.1093/hmg/ddv194. 

Klein, Richard G. 2008. “Out of Africa and the Evolution of Human Behavior.” Evolutionary 

Anthropology: Issues, News, and Reviews 17 (6): 267–81. 

https://doi.org/10.1002/evan.20181. 

Kukurba, Kimberly R., Princy Parsana, Brunilda Balliu, Kevin S. Smith, Zachary Zappala, 

David A. Knowles, Marie-Julie Favé, et al. 2016. “Impact of the X Chromosome and 

Sex on Regulatory Variation.” Genome Research 26 (6): 768–77. 

https://doi.org/10.1101/gr.197897.115. 

Lappalainen, Tuuli, Michael Sammeth, Marc R. Friedländer, Peter A. C. ‘t Hoen, Jean 

Monlong, Manuel A. Rivas, Mar Gonzàlez-Porta, et al. 2013. “Transcriptome and 

Genome Sequencing Uncovers Functional Variation in Humans.” Nature 501 (7468): 

506–11. https://doi.org/10.1038/nature12531. 

Lewis, Anna C. F., Santiago J. Molina, Paul S. Appelbaum, Bege Dauda, Anna Di Rienzo, 

Agustin Fuentes, Stephanie M. Fullerton, et al. 2022. “Getting Genetic Ancestry Right 

for Science and Society.” Science 376 (6590): 250–52. 

https://doi.org/10.1126/science.abm7530. 



 

45 

Li, Binglan, Shefali S. Verma, Yogasudha C. Veturi, Anurag Verma, Yuki Bradford, David 

W. Haas, and Marylyn D. Ritchie. 2018. “Evaluation of PrediXcan for Prioritizing 

GWAS Associations and Predicting Gene Expression.” Pacific Symposium on 

Biocomputing. Pacific Symposium on Biocomputing 23: 448–59. 

MacArthur, Jacqueline, Emily Bowler, Maria Cerezo, Laurent Gil, Peggy Hall, Emma 

Hastings, Heather Junkins, et al. 2017. “The New NHGRI-EBI Catalog of Published 

Genome-Wide Association Studies (GWAS Catalog).” Nucleic Acids Research 45 

(D1): D896–901. https://doi.org/10.1093/nar/gkw1133. 

Mancuso, Nicholas, Simon Gayther, Alexander Gusev, Wei Zheng, Kathryn L. Penney, 

Zsofia Kote-Jarai, Rosalind Eeles, Matthew Freedman, Christopher Haiman, and 

Bogdan Pasaniuc. 2018. “Large-Scale Transcriptome-Wide Association Study 

Identifies New Prostate Cancer Risk Regions.” Nature Communications 9 (1): 4079. 

https://doi.org/10.1038/s41467-018-06302-1. 

Martin, Alicia R., Masahiro Kanai, Yoichiro Kamatani, Yukinori Okada, Benjamin M. Neale, 

and Mark J. Daly. 2019. “Clinical Use of Current Polygenic Risk Scores May 

Exacerbate Health Disparities.” Nature Genetics 51 (4): 584–91. 

https://doi.org/10.1038/s41588-019-0379-x. 

Mikhaylova, Anna V., and Timothy A. Thornton. 2019. “Accuracy of Gene Expression 

Prediction From Genotype Data With PrediXcan Varies Across and Within 

Continental Populations.” Frontiers in Genetics 10. 

https://www.frontiersin.org/articles/10.3389/fgene.2019.00261. 

Mizuno, Akira, and Yukinori Okada. 2019. “Biological Characterization of Expression 

Quantitative Trait Loci (EQTLs) Showing Tissue-Specific Opposite Directional 

Effects.” European Journal of Human Genetics 27 (11): 1745–56. 

https://doi.org/10.1038/s41431-019-0468-4. 

Mogil, Lauren S., Angela Andaleon, Alexa Badalamenti, Scott P. Dickinson, Xiuqing Guo, 

Jerome I. Rotter, W. Craig Johnson, Hae Kyung Im, Yongmei Liu, and Heather E. 

Wheeler. 2018. “Genetic Architecture of Gene Expression Traits across Diverse 

Populations.” PLOS Genetics 14 (8): e1007586. 

https://doi.org/10.1371/journal.pgen.1007586. 

Morales, Joannella, Danielle Welter, Emily H. Bowler, Maria Cerezo, Laura W. Harris, Aoife 

C. McMahon, Peggy Hall, et al. 2018. “A Standardized Framework for 

Representation of Ancestry Data in Genomics Studies, with Application to the 

NHGRI-EBI GWAS Catalog.” Genome Biology 19 (1): 21. 

https://doi.org/10.1186/s13059-018-1396-2. 

Mulford, Ashley J, Claudia Wing, M Eileen Dolan, and Heather E Wheeler. 2021. 

“Genetically Regulated Expression Underlies Cellular Sensitivity to Chemotherapy in 

Diverse Populations.” Human Molecular Genetics 30 (3–4): 305–17. 

https://doi.org/10.1093/hmg/ddab029. 



 

46 

Nica, Alexandra C., and Emmanouil T. Dermitzakis. 2013. “Expression Quantitative Trait 

Loci: Present and Future.” Philosophical Transactions of the Royal Society B: 

Biological Sciences 368 (1620): 20120362. https://doi.org/10.1098/rstb.2012.0362. 

Okoro, Paul C., Ryan Schubert, Xiuqing Guo, W. Craig Johnson, Jerome I. Rotter, Ina 

Hoeschele, Yongmei Liu, et al. 2021. “Transcriptome Prediction Performance across 

Machine Learning Models and Diverse Ancestries.” Human Genetics and Genomics 

Advances 2 (2): 100019. https://doi.org/10.1016/j.xhgg.2020.100019. 

Pan UKBB Team. 2022. “Pan UKBB.” 2022. https://pan.ukbb.broadinstitute.org/. 

Petersen, Ashley, Carolina Alvarez, Scott DeClaire, and Nathan L. Tintle. 2013. “Assessing 

Methods for Assigning SNPs to Genes in Gene-Based Tests of Association Using 

Common Variants.” PLoS ONE 8 (5): e62161. 

https://doi.org/10.1371/journal.pone.0062161. 

Popejoy, Alice B., and Stephanie M. Fullerton. 2016. “Genomics Is Failing on Diversity.” 

Nature 538 (7624): 161–64. https://doi.org/10.1038/538161a. 

Purcell, Shaun, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel A. R. Ferreira, 

David Bender, Julian Maller, et al. 2007. “PLINK: A Tool Set for Whole-Genome 

Association and Population-Based Linkage Analyses.” American Journal of Human 

Genetics 81 (3): 559–75. https://doi.org/10.1086/519795. 

Qiao, Jiahao, Zhonghe Shao, Yuxuan Wu, Ping Zeng, and Ting Wang. 2022. “Detecting 

Associated Genes for Complex Traits Shared across East Asian and European 

Populations under the Framework of Composite Null Hypothesis Testing.” Journal of 

Translational Medicine 20 (1): 424. https://doi.org/10.1186/s12967-022-03637-8. 

Rutherford, Adam. 2020. How to Argue with a Racist: What Our Genes Do (and Don’t) Say 

about Human Difference. New York: The Experiment. 

Schubert, Ryan, Elyse Geoffroy, Isabelle Gregga, Ashley J. Mulford, Francois Aguet, Kristin 

Ardlie, Robert Gerszten, et al. 2022. “Protein Prediction for Trait Mapping in Diverse 

Populations.” PLOS ONE 17 (2): e0264341. 

https://doi.org/10.1371/journal.pone.0264341. 

Shabalin, Andrey A. 2012. “Matrix EQTL: Ultra Fast EQTL Analysis via Large Matrix 

Operations.” Bioinformatics 28 (10): 1353–58. 

https://doi.org/10.1093/bioinformatics/bts163. 

Shastry, B. S. 2002. “SNP Alleles in Human Disease and Evolution.” Journal of Human 

Genetics 47 (11): 0561–66. https://doi.org/10.1007/s100380200086. 

Sheng, Xin, Yuting Guan, Ziyuan Ma, Junnan Wu, Hongbo Liu, Chengxiang Qiu, Steven 

Vitale, et al. 2021. “Mapping the Genetic Architecture of Human Traits to Cell Types 

in the Kidney Identifies Mechanisms of Disease and Potential Treatments.” Nature 

Genetics 53 (9): 1322–33. https://doi.org/10.1038/s41588-021-00909-9. 



 

47 

Sollis, Elliot, Abayomi Mosaku, Ala Abid, Annalisa Buniello, Maria Cerezo, Laurent Gil, 

Tudor Groza, et al. 2023. “The NHGRI-EBI GWAS Catalog: Knowledgebase and 

Deposition Resource.” Nucleic Acids Research 51 (D1): D977–85. 

https://doi.org/10.1093/nar/gkac1010. 

Stringer, Chris. 2014. “Why We Are Not All Multiregionalists Now.” Trends in Ecology & 

Evolution 29 (5): 248–51. https://doi.org/10.1016/j.tree.2014.03.001. 

Sun, Lei, Zhong Wang, Tianyuan Lu, Teri A. Manolio, and Andrew D. Paterson. 2023. 

“EXclusionarY: Ten Years Later, Where Are the Sex Chromosomes in GWAS?” 

Preprint. Genetics. https://doi.org/10.1101/2023.02.03.526992. 

Taliun, Daniel, Daniel N. Harris, Michael D. Kessler, Jedidiah Carlson, Zachary A. Szpiech, 

Raul Torres, Sarah A. Gagliano Taliun, et al. 2021. “Sequencing of 53,831 Diverse 

Genomes from the NHLBI TOPMed Program.” Nature 590 (7845): 290–99. 

https://doi.org/10.1038/s41586-021-03205-y. 

The 1000 Genomes Project Consortium. 2012. “An Integrated Map of Genetic Variation from 

1,092 Human Genomes.” Nature 491 (7422): 56–65. 

https://doi.org/10.1038/nature11632. 

The All of Us Research Program Investigators. 2019. “The ‘All of Us’ Research Program.” 

New England Journal of Medicine 381 (7): 668–76. 

https://doi.org/10.1056/NEJMsr1809937. 

The GTEx Consortium, Kristin G. Ardlie, David S. Deluca, Ayellet V. Segrè, Timothy J. 

Sullivan, Taylor R. Young, Ellen T. Gelfand, et al. 2015. “The Genotype-Tissue 

Expression (GTEx) Pilot Analysis: Multitissue Gene Regulation in Humans.” Science 

348 (6235): 648–60. https://doi.org/10.1126/science.1262110. 

The H3Africa Consortium, Enock Matovu, Bruno Bucheton, John Chisi, John Enyaru, 

Christiane Hertz-Fowler, Mathurin Koffi, et al. 2014. “Enabling the Genomic 

Revolution in Africa.” Science 344 (6190): 1346–48. 

https://doi.org/10.1126/science.1251546. 

Tishkoff, Sarah A., and Scott M. Williams. 2002. “Genetic Analysis of African Populations: 

Human Evolution and Complex Disease.” Nature Reviews Genetics 3 (8): 611–21. 

https://doi.org/10.1038/nrg865. 

Uffelmann, Emil, Qin Qin Huang, Nchangwi Syntia Munung, Jantina de Vries, Yukinori 

Okada, Alicia R. Martin, Hilary C. Martin, Tuuli Lappalainen, and Danielle 

Posthuma. 2021. “Genome-Wide Association Studies.” Nature Reviews Methods 

Primers 1 (1): 1–21. https://doi.org/10.1038/s43586-021-00056-9. 

Urbut, Sarah M., Gao Wang, Peter Carbonetto, and Matthew Stephens. 2019. “Flexible 

Statistical Methods for Estimating and Testing Effects in Genomic Studies with 

Multiple Conditions.” Nature Genetics 51 (1): 187–95. 

https://doi.org/10.1038/s41588-018-0268-8. 



 

48 

Visscher, Peter M., William G. Hill, and Naomi R. Wray. 2008. “Heritability in the 

Genomics Era — Concepts and Misconceptions.” Nature Reviews Genetics 9 (4): 

255–66. https://doi.org/10.1038/nrg2322. 

Visscher, Peter M., Naomi R. Wray, Qian Zhang, Pamela Sklar, Mark I. McCarthy, Matthew 

A. Brown, and Jian Yang. 2017. “10 Years of GWAS Discovery: Biology, Function, 

and Translation.” The American Journal of Human Genetics 101 (1): 5–22. 

https://doi.org/10.1016/j.ajhg.2017.06.005. 

Visscher, Peter M., Matthew A. Brown, Mark I. McCarthy, and Jian Yang. 2012. “Five Years 

of GWAS Discovery.” The American Journal of Human Genetics 90 (1): 7–24. 

https://doi.org/10.1016/j.ajhg.2011.11.029. 

Vries, Paul S de, Michael R Brown, Amy R Bentley, Yun J Sung, Thomas W Winkler, 

Ioanna Ntalla, Karen Schwander, et al. 2019. “Multiancestry Genome-Wide 

Association Study of Lipid Levels Incorporating Gene-Alcohol Interactions.” 

American Journal of Epidemiology 188 (6): 1033–54. 

https://doi.org/10.1093/aje/kwz005. 

Wainberg, Michael, Nasa Sinnott-Armstrong, Nicholas Mancuso, Alvaro N. Barbeira, David 

A. Knowles, David Golan, Raili Ermel, et al. 2019. “Opportunities and Challenges for 

Transcriptome-Wide Association Studies.” Nature Genetics 51 (4): 592–99. 

https://doi.org/10.1038/s41588-019-0385-z. 

Welter, Danielle, Jacqueline MacArthur, Joannella Morales, Tony Burdett, Peggy Hall, 

Heather Junkins, Alan Klemm, et al. 2014. “The NHGRI GWAS Catalog, a Curated 

Resource of SNP-Trait Associations.” Nucleic Acids Research 42 (D1): D1001–6. 

https://doi.org/10.1093/nar/gkt1229. 

Westra, Harm-Jan, and Lude Franke. 2014. “From Genome to Function by Studying 

EQTLs.” Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, From 

genome to function, 1842 (10): 1896–1902. 

https://doi.org/10.1016/j.bbadis.2014.04.024. 

Willer, Cristen J, Ellen M Schmidt, Sebanti Sengupta, Gina M Peloso, Stefan Gustafsson, 

Stavroula Kanoni, Andrea Ganna, et al. 2013. “Discovery and Refinement of Loci 

Associated with Lipid Levels.” Nature Genetics 45 (11): 1274–83. 

https://doi.org/10.1038/ng.2797. 

Wise, Anastasia L., Lin Gyi, and Teri A. Manolio. 2013. “EXclusion: Toward Integrating the 

X Chromosome in Genome-Wide Association Analyses.” The American Journal of 

Human Genetics 92 (5): 643–47. https://doi.org/10.1016/j.ajhg.2013.03.017. 

Wojcik, Genevieve L., Mariaelisa Graff, Katherine K. Nishimura, Ran Tao, Jeffrey Haessler, 

Christopher R. Gignoux, Heather M. Highland, et al. 2019. “Genetic Analyses of 

Diverse Populations Improves Discovery for Complex Traits.” Nature 570 (7762): 

514–18. https://doi.org/10.1038/s41586-019-1310-4. 



 

49 

Yang, Jian, Beben Benyamin, Brian P. McEvoy, Scott Gordon, Anjali K. Henders, Dale R. 

Nyholt, Pamela A. Madden, et al. 2010. “Common SNPs Explain a Large Proportion 

of the Heritability for Human Height.” Nature Genetics 42 (7): 565–69. 

https://doi.org/10.1038/ng.608. 

Zhu, Jinhang, Geng Chen, Sibo Zhu, Suqing Li, Zhuo Wen, Bin Li, Yuanting Zheng, and 

Leming Shi. 2016. “Identification of Tissue-Specific Protein-Coding and Noncoding 

Transcripts across 14 Human Tissues Using RNA-Seq.” Scientific Reports 6 (1): 

28400. https://doi.org/10.1038/srep28400. 

Zou, Hui, and Trevor Hastie. 2005. “Regularization and Variable Selection via the Elastic 

Net.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67 

(2): 301–20. https://doi.org/10.1111/j.1467-9868.2005.00503.x. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

50 

 

 

 

VITA 

Daniel S. Araujo was born in Contagem, Minas Gerais, Brazil. After obtaining his 

Bachelor of Science degree in Biological Sciences at the Federal University of Minas Gerais, 

Brazil, in August of 2020, he sought to continue his training in the field of genetics. Araujo 

was granted the Graduate Research Fellowship at Loyola University Chicago and joined the 

Master of Science Bioinformatics program in August 2020 to work under Dr. Heather 

Wheeler’s supervision. He completed the program in May, 2023. Going forward, Araujo will 

pursue a Doctor of Philosophy degree in Human Genetics at The University of Chicago, 

starting Fall 2023.  


	Incorporating Sex Chromosomes in Transcriptome Prediction Models and Improving Cross-Population Prediction Performance
	Recommended Citation

	tmp.1695155406.pdf.TyhX1

