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ABSTRACT 

Advancements in sequencing technologies have enabled scientists to gain insight into the 

microbes that inhabit the human body, including the urinary tract. Cataloging the bacteria that 

inhabit the urinary tract has primarily relied on amplification and sequencing of specific variable 

regions of the 16S rRNA gene enabling genus-level taxonomic identification. Recently, shotgun 

metagenomic sequencing has been employed such that bacterial taxonomy as well as the 

functionality that they encode can be inferred. In this study, we compare taxonomies assigned by 

16S sequencing and shotgun metagenomic sequencing of the urinary microbiota (urobiome) of 

females with and without a clinical diagnosis of a urinary tract infection (UTI). Rather than 

target specific variable regions of the 16S rRNA gene, we employed long-read sequencing 

technology which captures all nine variable regions such that species-level taxonomic 

assignments can be made. First, we characterize the bacterial constituents of the urobiomes of the 

two cohorts from the full-length 16S sequence. To assess the power of full-length rather than 

single variable regions, we computationally derived short-reads and compared these predictions 

to our full-length analyses. Next, we compared the results of the taxonomic predictions from full-

length 16S to those of shotgun metagenomic sequencing of a subset of our samples. We found 

that long-read sequencing created more accurate taxonomic classifications than shotgun 

sequencing and single variable regions. Both sequencing approaches suggest that multiple strains 

of species colonize the urobiome. 
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CHAPTER ONE 

INTRODUCTION 

Introduction to the Urinary Microbiome 

Microbiome research has rapidly expanded over the last ten years, and for good reason: 

lower cost of sequencing, more tools for analysis, and the keen public’s interest provide 

scientists means for microbial investigation. Microbial research can take place anywhere there is 

a community of bacteria, whether that be in soil, water, or animals (1). The microbiota 

(microbial community of a particular niche) can affect the host’s state and, in the case of 

humans, could possibly lead to disease or lack thereof. Because the scientific community can 

confirm that the microbiota can directly correlate with health, the human microbiota is a rapidly 

expanding area of microbial research (2–5). We also know that different bacteria inhabit 

different areas of the human body, which leads to the separate microbial analysis of different 

sites such as the gut, the mouth, the skin, or even the eye (3,6–8). 

 The urinary tract microbiota is a low biomass environment. For many years, it was 

assumed that the urinary tract of healthy humans was sterile because bacteria from urine could 

not be cultured under standard laboratory conditions, but with Expanded Quantitative Urine 

Culture (EQUC) procedure, Hilt et al. were able to confirm that bacteria did live in the bladder of 

asymptomatic (“healthy”) female participants (9). This study used transurethral catheterized 

urine, avoiding any contamination that voided urine might incur; prior analysis of urine 

collection methods found that transurethral catheterized urine was representative of urine from 

the bladder (10). The EQUC method isolated several species from asymptomatic females, 
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including Lactobacillus gasseri, Corynebacterium coyleae, Streptococcus anginosus, 

Actinomyces neuii, Staphylococcus epidermidis, and more (9). High-throughput 16S rRNA gene 

sequencing of bladder urine samples identified the same species as the EQUC procedure, in 

addition to fastidious bacterial species that are notoriously difficult to culture (9). The studies of 

Wolfe et al. and Hilt et al. opened the door for more research into the urinary microbiome or 

urobiome (the genomic content of the urinary microbiota) (9,10). Subsequent studies confirmed 

that the bladders of both symptomatic and asymptomatic individuals contain bacteria (11–14). 

Urinary Tract Infections and Antibiotic Resistance 

 Acute urinary tract infections (UTI) are the most treated outpatient infection and 

healthcare-associated bacterial infection, and they increase in frequency and severity with age 

(15). The stigma surrounding UTIs can cause emotional distress and ultimately decrease quality 

of life. When a UTI is contracted, common symptoms include painful and frequent urination, 

difficulty beginning urine stream, and blood in the urine (16). Relieving these symptoms and/or 

seeking treatment is time consuming and costly for the patient. In cases where the UTI was 

developed in the hospital, it often leads to a price increase of a thousand dollars or more from 

their previous bill ($876 for tests and medications, and up to $10,197 for increased ICU stays) 

(17). Even after preventative steps and treatments have been taken, it is very common (25%-

30%) for UTIs to reoccur, exponentially increasing the cost and burden on the patient (16). 

While UTIs can sometimes resolve themselves on their own, many patients need treatment 

involving antibiotics (18). Treatments can depend on whether the infection is considered 

uncomplicated or complicated, or if the bacteria causing the infection is antibiotic resistant, 

which is rising in prevalence (18). UTIs are considered complicated if the patient has underlying 

health conditions that may affect treatment such as age, pregnancy, or diabetes. At first, 
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treatment resistance was seen mainly in complicated UTIs, but now it can be found in many 

uncomplicated cases (19). UTIs caused by antibiotic resistant bacteria are now considered a 

public health threat (20). Despite this rise of antibiotic resistance in UTI treatment, developing 

new drugs to combat infections is not increasing (19).  

The most frequent (75%-95% of uncomplicated urinary tract infections) bacterial agent 

of acute UTIs is uropathogenic Escherichia coli (UPEC), although several other species of 

bacteria have been shown to cause UTIs as well (4,21,22). However, research has not been able 

to identify the specific mechanisms that lead to E. coli colonization and subsequent infection, as 

E. coli can be present in the bladder of asymptomatic individuals as well (11,21–23). This 

suggests that UTIs are disorders involving “multiple variables” (4). Until the discovery of a 

distinct urinary microbiota, the prevailing hypothesis was that E. coli strains from the gut are 

introduced to and colonize the urinary tract leading to acute UTIs (21,23).  Antibiotic resistance 

has been observed in ESBL-producing UPEC strains that can be common in hospital/long term 

care settings (12). These strains can inactivate antibiotics and convey multidrug resistance via 

plasmids (24). Another species that has been shown to cause UTIs is Klebsiella pneumoniae, 

which is associated more with healthcare-related infection than uncomplicated UTIs (25). 

Identification of infections caused by Klebsiella is an important step to stop spread of infection, 

because Klebsiella strains that produce Carbapenemase (a β-lactamase) can be deadly (26). Other 

uropathogenic species include Proteus mirabilis, Pseudomonas aeruginosa, and Enterococcus 

faecalis (22).  

Surveys of the female urobiome have associated several bacterial species with the lack of 

lower urinary tract symptoms, including species of Lactobacillus, Gardnerella, and 

Staphylococcus (27). Some members of the urobiome can provide protection from UPEC and 
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other uropathogens, For instance, Lactobacillus strains have been shown to inhibit growth of 

uropathogenic strains E. coli, K. pneumoniae, and E. faecalis (28). The Thomas-White dataset, 

which aimed to characterize the asymptomatic urinary microbiome, found species within the 

Staphylococcus, Lactobacillus, Streptococcus, Gardnerella, Bifidobacterium, and Bacillus 

genera as well as finding Escherichia strains (23).  

Discovery of Microbial Taxonomy with 16S rRNA Sequencing Data 

 Complex microbial communities have shaped life on Earth, and recent developments in 

high-throughput sequencing technology make investigating these communities feasible. 

Metagenomics is the study of sequences derived from many organisms in a complex community, 

including the human microbiota. This captures bacteria that cannot be cultured in the lab, e.g., 

fastidious bacteria of the urinary tract. Currently, there are two main approaches for sequencing 

microbial communities: 16S rRNA gene sequencing and shotgun metagenomic sequencing. 

16S rRNA gene sequencing has been used to investigate microbial taxonomy for almost 

half a century. At the foundation of this technology is the fact that all prokaryotes (bacteria and 

archaea) encode for the16S rRNA gene. In the late 1970s and into the 1980s, Carl Woese 

investigated the 16S rRNA gene sequence and its ability to assign taxonomy (29). The 16S 

rRNA gene sequence is composed of 9 regions of variation (referred to as variable regions and 

denoted by a capital V) dispersed between regions of conservation. These variable regions can be 

translated to the taxonomy of a given prokaryote.  

The general steps for 16S rRNA gene sequencing include obtaining and extracting DNA 

from the sample, performing polymerase chain reaction (PCR) amplification of the 16S rRNA 

gene sequences in the sample, and sequencing the PCR amplicons (Figure 1 A-C). This is 

followed by subsequent computational analysis of the sequencing reads produced. The advent of 
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high-throughput sequencing technologies enabled researchers to sequence all 16S rRNA PCR 

amplicons from the community in a cost- and time-effective manner. High-throughput 

sequencing technologies are limited in the length of the reads it can produce, with current short-

read sequencing platforms limited to reads of 300 bp (and 600 bp when using the paired-end 

format). Thus, short-read technologies such as Illumina can only sequence specific regions of the 

16S rRNA gene sequence (for example, the V1-V3 regions). Prior research has found that 

different regions are better at determining taxonomy than others for certain microbiomes, as 

discussed in subsequent chapters (30,31). 
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Figure 1. The general schema of 16S rRNA gene sequencing. The 16S gene is amplified, 
sequenced, and identified (Image from (32). A represents a microbe, B shows the 16S rRNA 
gene codes for the 16S rRNA subunit, C shows the 16S gene being amplified into many copies, 
and those copies being sequencing and identified. D and F shows the order of phylogenetic 
classification to the species level. 
 

After sequencing, taxonomy is assigned to the reads (Figure 1 C, D, F). For the last ten to 

fifteen years, reads from high-throughput 16S rRNA gene surveys were clustered into 

Operational Taxonomic Units (OTUs). An OTU is not a specific species or strain, rather it is a 

consensus sequence from a cluster calculated from sequence similarity. Commonly, the OTU 
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approach groups sequences greater or equal to 97% similarity together, signifying a single 

taxonomic unit. Sequences from strains of the same genus are expected to have at least 95% 

similarity and those from the same strain are 99% (33). Although OTUs was an important step in 

16S data analysis because it made the process of taxonomic assignment a computationally lighter 

task by clustering millions of sequences into thousands of groups, it is not sensitive enough to 

classify the depth of data we can sequence now (34). 

The problem with OTUs is the concept of sequence similarity because it does not account 

for evolutionary distances (34). The 97% species-level classification is an estimation, and it has 

been proven to be too high and too low for some species of bacteria. For instance, some species 

of bacteria have a 99% similarity and other species (like E. coli) can have closer to 5% variance 

within several copies of the 16S gene (34). In these cases, some bacteria would be combined into 

one consensus sequence, erasing species-level diversity, and other species would be split into 

multiple clusters, which would represent false species-level diversity. Because of the clustering 

and similarity thresholds summarizing sequences instead of deciphering them, it would be 

unreasonable to conclude species-level diversity from OTUs.  

The ability to analyze 16S sequencing data entered a new era with the concept of 

Amplicon Sequence Variants (ASVs). The concept of ASVs was introduced in 2013, and they 

attempt to denoise sequences without removing any of the actual biological diversity that can be 

lost during clustering (35,36). Where OTUs used clustering to attempt to remove sequencing 

errors, ASV-creating pipelines remove errors through machine learning algorithms. Thus, ASVs 

should represent actual species, and possibly strains. 

The software tool DADA2 implements this ASV strategy (37). In their paper, Callahan et 

al. claimed that DADA2 can detect variation down to a single nucleotide (37). They provided 
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benchmarks for DADA2, comparing it to the frequently used 16S rRNA sequence analysis tools 

UPARSE (OTU clustering), MED (OTU clustering using entropy scores), mothur (OTU 

clustering using the average linkage algorithm), and QIIME using UCLUST (OTU clustering). 

DADA2 was made specifically for data generated by the Illumina short-read sequencing 

platform (the prevalent technology used for 16S sequencing surveys), by basing the denoising 

algorithm on Illumina self-reported errors. Other steps in the DADA2 core algorithm include 

pairwise alignments of the sequences via the Needleman-Wunsch algorithm, an error model 

creation that considers errors within and between reads, an abundance p-value that indicates if 

the sequence was likely to be created by errors or is present in the sample, and then the divisive 

partitioning algorithm where all sequences are compared to each other using the error rates and 

abundance p-values created previously (37). Callahan et al. further benchmarked DADA2 by 

examining previously annotated human vaginal samples and mouse gut samples and found that 

DADA2 produced more accurate taxonomic classifications and less incorrect classifications than 

methods based on OTUs clustering at the 97% similarity threshold (Callahan et al., 2016). Figure 

2 included in the DADA2 GitHub repository shows the accuracy obtained by DADA2 relative to 

OTU clustering at 97% (via mothur) with simulated data (https://benjjneb.github.io/dada2/).  
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Figure 2. Error rates of taxonomy assigned compared between 3% average-linkage (97% 
similarity) OTUs (the mothur taxonomic identification scheme) and DADA2, showing that 
DADA2 had a higher correlation to the true classifications. (Image from 
https://benjjneb.github.io/dada2/.)  
 

More recently, the invention of long-read sequencing provides the ability to sequence all 

nine of the variable regions of the ~1500 bp 16S rRNA gene sequence. In general, most long-

read sequencing can generate reads 1000s of nucleotides long, which is significantly longer than 

the 300 bp length currently possible with Illumina sequencers (38). Currently, there are two long-

read sequencing platforms: PacBio SMRT (Single Molecule Real-Time) platform and ONT 

(Oxford Nanopore). The SMRT technology was created in 2011 and bought by Pacific 

Biosciences (PacBio) (39). Previously, the largest drawback to long-read sequencing was high 

error rates, but the PacBio system has reduced errors to 0.05%, compared to 11-15% from 2015 

(38,40). PacBio outperforms ONT regarding time (40) and read length (41). Furthermore, ONT 
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has higher error rates than PacBio sequencing, but that gap is closing as both technologies 

advance (41). The process of PacBio sequencing is shown in Figure 3. 

 
 

 

Figure 3. The process of PacBio long-read sequencing using the SMRTBell Library 
Construction. (Image from 38.) 
 

Central to the success of taxonomic classification of 16S survey data is the choice of 

database used to assign taxonomy to the sequences. Popular databases used to assign taxonomy, 

specifically to 16S rRNA gene sequences, include NCBI, SILVA, RDP (Ribosomal Database 

Project), and GreenGenes. The NCBI 16S database is manually curated and composed of all 
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organisms submitted to the NCBI database (42). It has been shown to be successful at assigning 

16S taxonomy (30,42). There are externally created databases (labeled as contributed databases) 

that use the RefSeq database from the NCBI database that are formatted for use with DADA2, 

but those databases are not maintained by the DADA2 team 

(https://zenodo.org/record/4735821#.Y35IbezMLvU). SILVA, RDP, and GreenGenes are 

officially maintained with formatting specific for use with DADA2. While GreenGenes is an 

important database in the context of the history of 16S survey studies, it has not updated its 

taxonomy since 2013 (42). At the time of writing, that was almost ten years ago. Furthermore, in 

more recent benchmarking studies, GreenGenes classifications are not as accurate as other 

database options (43,44). Although the RDP database was updated more recently than 

GreenGenes (14 August 2020), it does not outperform GreenGenes (45). In a 2018 study, the 

RDP database miscalled 5% of genus classifications when used with mothur, and Greengenes 

miscalled 3.4% of genera when used with QIIME2 (note, these databases were not compared 

directly against each other because they are formatted for different tools) (43). SILVA is the 

largest database of the three maintained for use with DADA2, and it shares more taxonomic 

assignments with NCBI than the other two databases (42). The current SILVA release v138.1 has 

over 9.4 million sequences to compare for taxonomic assignment for ASV sequences (46). The 

SILVA v138 release also includes species level classifications, whereas RDP does not, and the 

GreenGenes species level classifications would probably be incorrectly assigned due to the lack 

of updates to the database.  

Taxonomic Classification using Shotgun Metagenomic Sequencing 

 Shotgun metagenomic sequencing is another sequencing strategy used to explore 

microbial communities. Shotgun sequencing gets its name from the general methodology of 
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capturing the entire genome: the genome is broken into small fragments, sequenced, and then 

reconstructed computationally. In contrast to 16S sequencing, shotgun sequencing can be used to 

sequence any organism, including eukaryotes and viruses which do not contain the 16S rRNA 

gene. Shotgun sequencing provides chromosomal and extrachromosomal information from a 

sample, so more than just taxonomic information can be inferred (47). It has been proven 

previously that shotgun sequencing can detect species that 16S rRNA sequencing cannot identify 

(48). Because more data can be extracted from the sample, species level classifications can be 

made and observing strain level variation is possible (49).  

 The concept for shotgun sequencing was proposed at a similar time as 16S rRNA 

sequencing; it was first proposed in 1979 by Rodger Staden (39). The concept of the approach 

was to use bacterial vectors to clone sections of a bacteria’s DNA, and computationally combine 

those cloned vectors to create a scaffold of contigs, and further assemble those scaffolds into a 

completed genome (50). An important distinction to make here is that Staden proposed this 

method of breaking down and rebuilding within the context of the singular genome of which the 

scientist already knew the taxonomic classification. The introduction of this technology led to a 

boom of full-genome phage and bacteria sequences being created in the 1980s (39). Shotgun 

metagenomic sequencing was another advancement that happened in the 2010s: instead of 

breaking up and reconstructing a singular genome, the approach was applied to entire bacterial 

communities. Each bacterial cell’s DNA is fragmented and sequenced, then computationally 

reconstructed into genomes, and it falls on the computational algorithm to determine the 

taxonomies represented by the DNA sequences.  

Taxonomy is assigned to metagenomic assembled genome sequences (MAGs) or bins of 

sequences (assembled or raw reads) likely to belong to the same genome or strain via database 
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comparisons. Before the creation of shotgun metagenomics-specific taxonomy software, the best 

way to assign taxonomy to metagenomic assemblies was by comparison to the NCBI database 

via the BLAST algorithm (51). As the throughput of sequencing technologies increased, use of 

BLAST became infeasible. As a result, several tools were developed. For example, the software 

tool Kraken was introduced in 2014 as a k-mer based approach to taxonomy assignment (51). 

Kraken relied on exact-match k-mers instead of attempting to find exact matches in sequences to 

assign taxonomy from a database, which shortened the length of time for alignment and 

lightened the computational load (51). In 2019, Kraken2 was released, and the biggest change to 

the tool was a reduction of memory usage of 85% (52). When compared to 16S taxonomic 

assignment algorithms, Kraken2 outperformed QIIME2’s classification scheme in 

“computational requirements, runtime, and accuracy” (53). 

Preliminary Work in Strain-Level Classifications 

 In general, strain-level diversity of bacteria in human microbiomes, whether that be in the 

urinary tract, gut, skin, or anywhere, could be the difference between a symptomatic or an 

asymptomatic disease state. For instance, specific strains in the urinary tract can be connected to 

pathogenicity and antibiotic resistance (18). There have been attempts to extract species and 

strain diversity from long-read 16S data, and the preliminary results are promising. A 2019 paper 

by Johnson et al found that PacBio sequencing of the V1-V9 regions could resolve strain 

differences in sequences taken from the GreenGenes database, and provided more specificity 

than 16S sequences that covered the V1-V3 regions (33). The strains were determined to be 

strains of the same species if they had 99% similarity with another sequence (33). It should be 

noted, though, that they found no differences in the taxonomic classification at the genus level 

for 16S sequencing V1-V3 regions, V1-V9 regions, and shotgun metagenomic sequencing, 



 14 
suggesting that previous variable region 16S sequencing was adequate for taxonomic assignment 

if species-level classification was not necessary (33). The Johnson study used OTUs as the 

taxonomic identification strategy, and they claim that a 99% similarity OTU could resolve strain 

level variation and 97% could classify genera level (33). They conclude their paper by saying 

that long-read sequencing (specifically PacBio) could be a valuable tool in investigating strain 

level variation, but it is hindered by its high error rates and the best way to continue research 

would be to develop computational tools that can decipher the actual biological data through the 

errors. It should also be noted that this study focused more on the issue that polymorphisms of 

the 16S gene present in short-read sequencing and did not focus on a particular organism or 

microbiome.  

 There are several tools that can be used to extract strain level variation from shotgun 

metagenomic sequencing, although none have truly outperformed others thus far. There are tools 

(MEGAN and MetaMaps) that utilize reference genomes to compare experimental genomes to 

find differing strains, similarly to taxonomy assignment in 16S rRNA gene sequencing (54,55). 

This approach is not as successful as others because many species and strains found in shotgun 

data have no reference to compare to (a recent meta-analysis study found about 77% of strains 

found across 150,000 genomes did not have a reference) (56). The tools that attempt to resolve 

down to the strain level are, as Anyansi et al write in a paper comparing current computational 

tools, “still in their infancy” (57). In this way, it seems as if the computational tools are playing 

catch-up to the extreme wealth of information we can gain from utilizing shotgun metagenomic 

sequencing. Alternatively, a de novo assembly tool, which does not depend on reference genome 

sequences, must be used. STRONG is a pipeline that constructs bins that represent species found 

in a sample, and then differentiates strains within the bins or MAGs (58). STRONG also utilizes 
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DESMAN (De Novo Extraction of Strains from Metagenomes) to further refine the bins/MAGs. 

When comparing the two tools, DESMAN identifies less strains than STRONG, which Quince et 

al use to indicate that their graph-based assembly approach is more effective than the DESMAN 

read-based approach alone (58). 

Scope of Thesis 

In this thesis, I examine the urinary microbiome with PacBio long-read data, simulated 

short-read variable region data, and shotgun metagenomic data. I also examine if strain-level 

diversity can be found within the samples. We sequenced the urobiomes of 14 females without a 

clinical UTI diagnosis (UTI negative), the urobiomes of 33 females with a clinical UTI diagnosis 

(UTI positive) as well as 2 mock community samples. The mock communities are our positive 

controls and helped gauge the accuracy of our methods. In Chapter 2, I investigate the urinary 

microbiome with PacBio long-read 16S rRNA gene sequencing. I examine the differences 

between the taxonomies found in the UTI positive and UTI negative samples. I also determine if 

strains can be detected using long-read sequencing. In Chapter 3, I computationally parse 

variable regions of the long-read 16S data to compare taxonomy found from variable regions and 

full 16S sequences. In Chapter 4, I use shotgun sequencing to assign taxonomy and resolve 

strains to UTI positive and UTI negative samples. These investigations of the urobiome will 

characterize the community and provide insight into taxonomy assignment and resolving strains 

with several types of microbial sequencing.  
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CHAPTER TWO 

LONG-READ SEQUENCING OF THE URINARY MICROBIOME 

Introduction 

 Taxonomic characterization of urobiomes is largely based on short-read amplification of 

variable regions of the 16S rRNA gene. Short-read surveys have profiled the urobiome of males 

and females, and more specifically continent females, females with urinary incontinence, and 

individuals with UTIs (10,14,23,27,30,59). These studies have created a general description of 

the commonly found phyla and genera in the urobiome, but given the limitations of short-read 

sequencing, they are unable to resolve constituents to the species level. Until the invention of 

long-read sequencing, species-level resolution has only been possible with culture-based studies 

(14,60). 

Examining species-level diversity is important because many of the genera that are 

commonly found in the urobiome include species classified as uropathogens as well as 

nonpathogenic “commensal” members. For example, Staphylococcus, which is commonly 

identified in the urobiomes of females with and without lower urinary tract symptoms, includes 

the “commensal” S. epidermidis as well as the UTI-associated species S. aureus, which is 

considered an emerging cause of UTIs in some patient populations (14,60–63). Lactobacillus is 

another example of this phenomenon: within the genus, it has been shown that different species 

can have different associations with urinary symptoms. Culture-based characterization of 

urobiomes of women with/without UUI (urge urinary incontinence) found that L. gasseri is 
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detected more frequently in the UUI cohort, while L. crispatus is more frequently detected in the 

control samples (14,60) 

L. crispatus can inhibit or kill uropathogens and has been associated with a healthy 

female urobiome, and clinical L. gasseri strains also have been found to kill urogenital 

pathogens, despite being found more frequently in the urobiome of females with UUI symptoms 

(64,65). A clinical L. jensenii strain was also found to be bactericidal for E. coli (66). 

Furthermore, the presence or absence of these species is not the only factor in possible 

commensal effects as variation in Lactobacillus inhibition strength has been detected both 

between species and even strains of the same species (28). 

While prior sequence-based investigations of the urobiome have been limited to short-

reads, primarily a residual of technological limitations, high-throughput full-length 16S rRNA 

gene sequencing surveys have now become feasible. Full-length sequences provide greater 

resolution, providing species-level and potentially strain-level resolution of bacteria within 

complex communities (33,67). At the onset of this project, this technology had yet to be applied 

to profiling the urobiome. In November 2022, the first report of long-read 16S sequencing of 

urinary samples was published (68). This study compared culture-based analysis and long-read 

16S sequencing of midstream voided urine samples collected from 20 European females without 

lower urinary tract symptoms. 

Here, we utilize long-read 16S sequencing of 33 UTI positive and 14 UTI negative 

urobiome samples to achieve species level classification. Additionally, we produced long-read 

16S sequencing of two mock communities of urinary isolates as a critical proof-of-concept for 

the technology for species-level identification of urinary isolates as well as detection of species 

variation. 
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Methods 

Fecal PacBio Data 

 Because analysis of urobiome samples with PacBio data has not been done before, 

preexisting PacBio long-read data was collected and pushed through the DADA2 pipeline as a 

proof of concept. Five human fecal PacBio SMRT samples were used (accession numbers: 

SRR8557463.1, SRR8557464.1, SRR8557465.1, SRR8557466.1, SRR8557467.1; these five 

samples were the first five entries from BioProject accession number PRJNA521754) (69). The 

human fecal PacBio data was downloaded to a remote server using SRA toolkit function 

fastqdump (https://github.com/ncbi/sra-tools). The RScript created for PacBio analysis was 

derived from the script Callahan et al. developed for the analysis of samples in this BioProject 

(https://benjjneb.github.io/LRASManuscript/LRASms_fecal.html). The first step was removal of 

primers and an initial length filter. Then, the main steps of DADA2 were run, which include 

dereplicating sequences, learning an error model, denoising, and creation of a frequency table of 

ASVs. Taxonomy was assigned to the frequency table using the SILVA v138 training set and 

chimeras were removed.  

Mock Communities 

 Mock communities were included to add a measure of accuracy. To create the mock 

communities, five urinary strains of E. coli, one urinary strain of P. mirabilis, one urinary strain 

of S. epidermidis, and one urinary strain of E. faecalis were grown. The E. coli strains were 

grown using BHI media, and the Proteus, Staphylococcus, and Enterococcus strains were grown 

using LB. Freezer (-80°C) stocks of all seven strains were streaked on 1.7% agar plates of the 

corresponding media. Plates were incubated overnight at 35°C with 5% CO2. A single colony 

from each plate was added to 1 mL of the corresponding liquid media and incubated overnight at 
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35°C with 5% CO2. DNA was extracted from these cultures using the DNeasy Blood and Tissue 

Kit (Qiagen), following the manufacturer’s protocol for Gram-positive bacteria with the 

following exceptions: we used 230 μl of lysis buffer (180 μl of 20 mM Tris-Cl, 2 mM sodium 

EDTA, and 1.2% Triton X-100 and 50 μl of lysozyme) in step 2 and altered the incubation time 

in step 5 to 10 min. DNA concentrations were then quantified using a Qubit Flourometer. Two 

mock communities were created by combining different quantities of DNA (Table 1). 

Sequencing was conducted as described below for the samples. 

 
Species/strain Mock Community #1 

(relative abundance) 
Mock Community #2 
(relative abundance) 

E. coli UMB1180 (B1) 100 ng (14.96%) 400 ng (34.07%) 

E. coli UMB1162 (B2) 100 ng (14.96%) 50 ng (4.26%) 

E. coli UMB1225 (D) 100 ng (14.96%) 300 ng (25.55%) 

E. coli UMB0103 (F) 100 ng (14.96%) 100 ng (8.52%) 

E. coli UMB1220 (B2) 100 ng (14.96%) 50 ng (4.26%) 

E. faecalis 54.3 ng (8.13%) 100 ng (8.52%) 

P. mirabilis 60 ng (8.98%) 120 ng (10.22%) 

S. epidermidis 54 ng (8.08%) 54 ng (4.60%) 

 
Table 1. List of species, quantities of DNA, and relative abundances in each mock community. 
For E. coli strains, the phylogroup is listed in parentheses. 
 
Sample Selection and Sequencing 

 The urobiome samples used in this study were provided by the Loyola Urinary Education 

and Research Collaborative (LUEREC), a part of Loyola Stritch School of Medicine. There were 

33 urine samples from females with a clinical diagnosis of UTI, and 14 urine samples from 

females with no lower urinary tract symptoms (hereto referred to as UTI negative). The samples 
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were collected using transurethral catheterization as part of previously approved IRB protocols 

(IRB #: 207102, 204195, 206449, 207152, 209545, 204133). At the time of collection, 

AssayAssure (10% by volume) was added to the urine sample and stored at -80°C. 

 DNA was extracted from each urine sample using the Norgen Urine DNA Isolation Kit 

following the manufacturer’s protocol with one exception: because we started with 500uL of 

urine (rather than 1.75mL), we adjusted the volume of the Binding Solution used accordingly. 

Serving as a negative control, nuclease free water was extracted using this same protocol. 

PacBio SMRT sequencing was conducted at the University of Maryland facility. 10 uL of 

extracted DNA of each sample was sent to the University of Maryland where library prep was 

completed following the PacBio procedure. Briefly, a Qubit florometer was used to measure the 

DNA concentration, then the DNA was normalized to 500 pg/microliter in elution buffer. The 

DNA was amplified using the following primers: “AGRGTTYGATYMTGGCTCAG” (27F) and 

“RGYTACCTTGTTACGACTT” (1492R). A SMRTbell library was constructed from the PCR 

products and sequenced using the PacBio HiFi platform. 

Analysis 

 We ran all samples through DADA2 with the same parameters. For the filterAndTrim 

step, the default DADA2 parameters were used (maxN=0, rm.phix=FALSE, maxEE=2) and the 

minimum length was set to 1000 bp and the maximum length was 1600 bp. After primers were 

removed and reads were trimmed, the sequences were dereplicated. Next was the error 

estimation step, which is critical to the DADA2 algorithm. The specific parameter for PacBio 

data “PacBioErrfun” was used for the error estimation model. Next, the DADA algorithm was 

run on the sequences. The assignTaxonomy() function from DADA2 was used to assign 

taxonomy with the SILVA v138 database (70). 
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After DADA2 was finished assigning taxonomy and creating an ASV table, the ASV 

table was used along with a metadata table to run the tool decontam (v 1.18), which uses 

statistical inferences to sort real ASVs from contaminants (71). In decontam, we used a 0.5 

threshold filter, which was more aggressive than the default. The aggressive filter identifies all 

sequences in the negative control as a contaminant, removing any sequence present in the 

negative control in the experimental data. A presence-absence table from the metadata table was 

created, and from there a chi-square test was performed and P scores for each ASV were 

generated. Based on the P score value, an ASV was classified as a contaminant or a real species 

found. A data.frame is outputted so that the sequences found to be contaminants from the UTI 

positive and UTI negative samples could be removed from the original ASV table.  

To represent the taxonomy found, ASV tables and taxonomy assignments were converted 

to .csv files and read back into RStudio. The taxonomic identifications were assigned to the ASV 

tables, replacing the actual sequences with species level classifications. With the modified ASV 

table, relative abundances of the species within samples could be created using the 

make_relative() function from the funrar package in R (72). To plot the abundances and relative 

abundances, the ASV tables had to be reshaped by the melt() function from the reshape2 package 

(73). Taxonomy plots were created using the package ggplot2 and arranged into figures using the 

ggpubr package (74,75). For the Shannon diversity metric, the diversity() function was used, 

which is provided in the base R language. 

Results 

Fecal Sample Analysis 

 First, we conducted a proof of concept for our analysis pipeline using five samples from 

the human fecal microbiome. This specific data was chosen because it was the proof of concept 
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data for PacBio data analysis in the DADA2 paper (76). In their proof of concept work, they 

highlighted the ability to utilize PacBio data with DADA2 and to detect strain level variation in 

the sample. Table 2 shows how many reads of the fecal samples passed through each step of the 

analysis pipeline using DADA2 (see table description). The average number of reads to make it 

through the DADA2 pipeline without being filtered out is about 60-64%. 

 
 Number of 

Original Reads 
Number of 
Reads after 
Primers 
Removed 

Number of 
Reads after 
Filtering 
Step 

Number of 
Reads after 
the 
Denoising 
Steps 

Percent Kept 
Throughout 
Pipeline 

SRR8557463 14675 11838 9447 9401 64.06% 

SRR8557464 25306 19923 16052 15937 62.98% 

SRR8557465 24657 18663 14939 14761 59.87% 

SRR8557466 22799 18663 14939 14761 64.74% 

SRR8557467 16315 12641 10115 9733 59.66% 
 
Table 2. Numbers of reads after each step of DADA2: the Primers columns refers to how many 
reads were kept after the removePrimers() function where the user defines the primers used to 
sequence the reads to be removed. “Filtered step” refers to the reads remaining after the 
filterAndTrim() function, which filters reads of a certain quality score and trims the remaining 
sequences to a user-set length. “Denoised” refers to the number kept after the learnErrors() and 
dada() functions, where the PacBio error rates were applied to the experimental data and ASVs 
were inferred. 
 

After it was confirmed that this proof of concept PacBio data could successfully run 

through our DADA2 analysis pipeline, we wanted to investigate if strain-level variation could be 

identified in the PacBio data. Figure 4 shows the abundances of the individual E. coli ASVs 

found in each fecal sample. There were 14 different ASVs found, which is the same result as the 
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Callahan paper using the data from this BioProject. In the paper, they concluded that this 

represented 6-7 strains (69). 

 

 

Figure 4. Stacked bar chart showing the raw abundances of E. coli sequence variants in the fecal 
PacBio samples.  
 
Negative Control Analysis 

 Before analyzing the mock communities, the negative control sample was run through 

our DADA2 analysis pipeline. This sample showed a high relative abundance of E. coli ASVs 

(Figure 5). Other genera of note identified in the negative control were Sphingomonas and 

Aerococcus, which have both been observed in the urobiome previously (77). The ASVs that 

were not E. coli were found at a low abundance, mostly at a count of one.  
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Figure 5. Relative abundance of all species classified from the negative control sample. 
 
Mock Communities  

 Next, I analyzed the mock communities with DADA2. We could assess the quality of the 

data through tracking the reads through DADA2 and comparing those percentages kept to the 

percentages kept of the fecal data. Overall, the percentages kept through the pipeline were 

similar to the fecal proof of concept data. Also, we found that our mock community samples 

contained on average more reads than the fecal samples: the average number of reads in the fecal 

data was 20,750 and the average number of reads in the mock communities was 47,588.5 (Table 

3). 
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Number of  
Original Reads 

Number of 
Reads After 
Primers 
Removed 

Numbers of 
Reads after 
Filter Step 

Number of 
Reads after 
Denoising 
Steps 

Percent Kept 
Throughout 
Pipeline 

Mock 1 50499 45772 28845 22443 44.44% 

Mock 2 44678 40907 27611 24836 58.89% 

 
Table 3. Shows the number of reads in the mock community samples after each step of DADA2. 
 

 

 

 

Figure 6. Pie charts showing the relative abundances of classifications for both mock 
communities at the species and genus levels.  
 

In Figure 6 (top), we see that DADA2 with PacBio reads found all of the species within 

the mock communities; Escherichia coli (Mock 1: n=12,941, Mock 2: n=15,435), S. epidermidis 

(Mock 1: n=1,558, Mock 2: n=20), E. faecalis (Mock 1: n=586, Mock 2: n=87), and P. mirabilis 

(Mock 1: n=328, Mock 2: n=119) are all present. Most of the other species' classifications found 

are within the genus of a species present, like S. saccharolyticus, E. rivorum, P. hauseri, E. 
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flexneri, E. boydii, E. marmotae, and E. fergusonii. Furthermore, many of the Escherichia 

species fall under the umbrella of E. coli in addition to the classification of Escherichia Shigella 

NA (Mock 1: n=2,903, Mock 2: n=4679); these ASVs could be classified to the genus, but not 

the species. (Note, the SILVA database combines the genera Escherichia and Shigella.)  

When we consider the genus level rather than the species level, we find that most of the 

predictions are for the genera of the species included in the mock communities (Figure 6 

bottom). There are only two incorrectly classified genera (Ralstonia and Izhakiella), and their 

abundance is very low compared to the correct classifications (relative abundances of 0.041% 

and 0.18% for Mock 1 and Mock 2, respectively). Species of these two genera, R. pickettii and 

Izhakiella NA, were detected in the species level analysis at low relative abundances (Figure 6 

top). When looking at the genus level, the small differences between species are resolved and the 

classifications are truer to the biological communities.  

 Next, I looked specifically into the E. coli variants found within the mock communities. 

Originally, there were five strains added to the mock communities from four different 

phylotypes. We also know that E. coli can have seven different copies of the 16S rRNA gene 

sequence, which could alter the amount of 16S variants found (78). Among the 5 E. coli strains 

in the mock communities, 45 different sequence variants were identified. This may represent 

roughly the number of E. coli variants found (5 strains per 7 copies could equal 35 sequence 

variants). However, the mock communities also include Proteus, which also belongs to the 

family Enterobacteriaceae, which could influence classifications.  

Analysis of UTI Positive Samples 

Next, the 33 urobiomes from females with a diagnosed UTI were analyzed. 2,109 ASVs 

were classified after DADA2, and 32 were filtered from the decontam package as contaminants 
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(based upon the negative control sample), leaving 2,077 “true” ASVs. One sample, 7803 did not 

have any ASVs identified. Overall, the most abundant ASV in the UTI samples was E. coli 

(n=273,417, 48.4%). In addition to E. coli, other species of the genus “Escherichia Shigella” that 

were identified in the samples included Escherichia Shigella flexneri (2.4%), boydii (1.7%), 

sonnei (1.7%), and NA (3%). The second most abundant species level classification was 

Aerococcus sanguinicola (n=26,104, 4.6%). Klebsiella aerogenes (n=24,302, 4.3%) and K. 

pneumoniae (n=20,284, 3.6%) were also found in the UTI positive data. Other abundant species 

include P. aeruginosa (n=22,829, 4%) and E. faecalis (n=22,380, 3.8%). Figure 7 shows that 

when Klebsiella, Aerococcus, Pseudomonas, or Enterococcus genera were found in a sample, 

they were the majority of the classifications for that sample. 

Some genera that were less abundant than the previously mentioned species but still 

prevalent in the samples were Delftia tsuruhatensis (4.1%), Rhizobium NA (3.4%), Ralstonia 

pickettii (1.5%), Lactobacillus iners (0.5%), and Gardnerella vaginialis (0.4%), which were 

abundant in varying levels throughout the samples but never was the majority of the 

classifications for a sample. Figure 7 (top) shows a heatmap for the 50 most abundant species for 

UTI positive data and a stacked bar chart for the top 20 most abundant genera assigned. Figure 7 

shows that the species and genera assignments are highly variable within the samples.  

 Other than examining relative abundances of species found, it is also important to note 

patterns found within the samples, classified as urotypes. A urotype is the dominant taxon in a 

urobiome (60). In our UTI positive samples, we found 5 distinct urotypes, samples that were 

dominated by a uropathogen:  E. coli, Klebsiella, Pseudomonas, Enterococcus, and Aerococcus 

(Figure 2.4 bottom). A sixth urotype is suggested in which no species was a majority of the 

ASVs; we call this the “mixed” urotype. The most abundant urotype was mixed, with 13 
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samples. There are several common genera across these samples: Ralstonia, Delftia, and 

Rhizobium as well as less common genera like Bifidobacterium (sample 7714) and Lactobacillus 

(7772). The Escherichia urotype was the next most common, with 12 out of 33 samples being 

dominated by E. coli (7728, 7531, 7660, 7672, 7676, 7707, 7715, 7720, 7771, 7775, 7785, and 

7791). The Aerococcus urotype was seen in samples 7758 and 7805, with relative abundances of 

specifically A. sanguinicola at 97.80% and 60.49% respectively. The other uropathogen-

dominated urotypes were found in one sample each. The Klebsiella urotype was seen in samples 

7651 and 7674. The Pseudomonas urotype was only seen in one sample, 7714, with a relative 

abundance of 78.94% P. aeruginosa. The Enterococcus urotype was seen in sample 7654 with 

95.37% E. faecalis relative abundance. 
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Figure 7. Above: a heatmap of relative abundances of the top 30 most abundant species in the 
UTI positive samples. Below: a stacked bar chart illustrating the differences of abundances of 
genera within the samples. Note, sample 7803 in both graphs is empty because after DADA2 
denoising, only 6 sequences remained, so no taxonomy was assigned to the sample.  

 
Figure 8 examines the samples that did not have a high relative abundance of E. coli 

(<n=20 E. coli ASVs). Here, we see the four uropathogen urotypes (Aerococcus, Klebsiella, 

Pseudomonas, and Enterococcus) as well as the mixed urotype. Within the mixed urotype, 

samples contain a combination of the species Delftia tsuruhatensis, Rhizobium NA, and 

Ralstonia NA genera (it is worth noting that R. pickettii itself was not seen in every sample). 

Many of those classifications remain at the genus level, and do not extend to the species level 

(indicated by the classification of NA following a genus name) (Figure 8).  

 

 

Figure 8. A stacked bar chart of the species composition of samples that had less than 20 E. coli 
ASVs assigned. Sample 7803 was removed because no taxonomic classifications were assigned.  
 

We also examined the specific E. coli sequence variants of the UTI positive samples. 393 

unique E. coli sequence variants were found within the UTI positive samples. The number of 

sequence variants per sample ranged from 0 (sample 7600) to 71 (sample 7720) (Figure 9). From 

comparing the raw counts of ASVs to the number of sequence variants found, we can see that the 
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number of sequence variants does not directly correlate to the number of ASVs classified (ie, 

more counts means more ASVs). For example, sample 7772 had 23 E. coli sequence variants 

with E. coli having a relative abundance >30%, but sample 7771, which had only 3 sequence 

variants, had E. coli at a relative abundance of over 90% (Figure 9).  

 

 

Figure 9. Above: Scatterplot of raw counts of ASVs assigned to the UTI positive data. Below: 
stacked bar chart of the E. coli sequence variants with the counts of sequence variants on the bars 
per sample. 
 
Analysis of UTI Negative Samples 

 Next, we classified the taxonomies of the 14 urobiomes from asymptomatic (UTI 

negative) females. There were 912 ASVs found. Decontam classified 7 of those as contaminants, 

so after processing there were 905 ASVs. While E. coli was found in the UTI negative samples, 

it was not the most abundant taxa (Figure 10 top). The most abundant taxa were Ralstonia 

pickettii (n=115,018, 48.3%) followed by, Escherichia Shigella dysenteriae (n=38,170, 16%) 

and Escherichia Shigella coli (n=19,582, 8.2%). After the two Escherichia species was Delftia 

tsuruhatensis (n=16,278, 6.8%). The next most abundant taxa were only classified at the genus 
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level and not to the species (Rhizobium NA 5%, Ralstonia NA 4.3%, Delftia NA 1%). With the 

exception of sample 5461, many of the UTI negative samples resembled each other. Sample 

5461 was dominated by Escherichia with a relative abundance of 96.88%, while the average 

relative abundance of Escherichia in the other UTI negative samples was 0.69% (Figure 10). 

 

 

Figure 10. Above: a heatmap of relative abundances of the top 30 most abundant species in the 
UTI negative samples. Below: a stacked bar chart illustrating the differences of abundances of 
genera within the samples.  

 
There were only two urotypes observed in the UTI negative data, mixed and Escherichia. 

All of the samples except for 5461 were of the mixed urotype, being mainly composed of 

Ralstonia, Delftia, Rhizobium, and Mesorhizobium. The previously four listed genera were 

present in every UTI negative sample, except for sample 5461. Lactobacillus, a previously 
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established healthy urobiome community member, was found in 4339, 4368, 4646, 4668, and 

4814 (60). Bradyrhizobium elkanii, Mesorhizobium jarvisii,  Sphingomonas leidyi were also all 

found in every sample except for sample 5461. Sample 5461 has a relative abundance of 96.88% 

E. coli, and stands out from the other urotype observed in the dataset.  

 The E. coli variants of the UTI negative samples were also plotted (Figure 11). Only 22 

sequence variants were found in the UTI negative samples, which is less than the mock 

communities and UTI positive samples. Furthermore, almost all of the E. coli variants in the UTI 

negative samples were found only in sample 5461 (n=19,407). In fact, it contained all the 

sequence variants found within the UTI negative group. In fact, the sample has a higher 

abundance of E. coli ASVs than some UTI positive samples (sample 5461 E. Coli abundance: 

96.88%, sample 7519: 0.12%, sample 7772: 12.22%, sample 7758: 14.40%) and more E. coli 

sequence variants than 20 of the UTI positive samples (Figure 10). Although less abundant than 

sample 5461, samples 4646 (n=49) and 4979 (n=26) had E. coli sequence variants as well.  
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Figure 11. Above: Scatterplot of raw counts of ASVs assigned to the UTI negative data. Below: 
stacked bar chart of the E. coli sequence variants with the counts of sequence variants on the bars 
per sample. 
 
Comparison of UTI and UTI Negative Samples 

 The taxonomic assignments of UTI positive and UTI negative samples vary, but they 

share E. coli, R.pickettii, and D. tsushatensis in their most abundant classifications. Examining 

the genera of the communities shows that in UTI positive samples, not only is there a higher 

abundance of sequences and ASVs in general, but there are previously identified pathogenic 

genera including Klebsiella, Aerococcus, Pseudomonas, and Enterococcus. In the UTI negative 

samples, R. pickettii was present in every sample except for 5461, which was majority E. coli. E. 

coli was the third most abundant ASV in the UTI negative samples, after R. pickettii and 

Escherichia Shigella dysenteriae, although almost all of the abundance is found in sample 5461 

(n=19,407). When taxa are collapsed to the genus level, the differences within Escherichia 

Shigella are resolved and the genus becomes the second most abundant in the UTI negative 

samples. After Escherichia Shigella, the third most abundant genus is Delftia, which is much 

more widespread across the UTI negative samples (Figure 8).  

While individual taxonomic composition is important, the main similarities and 

differences between the UTI positive and UTI negative samples are best shown by their 

urotypes. The UTI positive samples produced six urotypes (Escherichia, Aerococcus, Klebsiella, 

Pseudomonas, Enterococcus, and mixed), and the UTI negative produced two (mixed and 

Escherichia). The difference in number of urotype indicates that the UTI negative samples are 

more similar to other samples in the group, whereas in the UTI positive samples the composition 

varies greatly. In the mixed urotype in both UTI positive and UTI negative samples, Ralstonia, 

Delftia, Rhizobium, and Mesorhizobium are shared across all samples. The members of the 
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mixed urotype do not vary greatly between UTI positive and UTI negative samples, so it is 

interesting that some of the patients are symptomatic for UTIs, and others are not.  

To examine the differences in ecological diversity within the UTI positive and UTI 

negative groups more in depth, Shannon diversity scores were assigned to the samples and those 

scores were plotted on histograms (Figure 12). Generally, the UTI positive samples showed more 

diversity than the UTI negative samples shown by the Shannon Diversity scores. The UTI 

negative scores range from 1.4-2.4, whereas the UTI positive samples have a wider range (0.8-

4.2). 

 

 

Figure 12. Left: Shannon diversity score of UTI positive data. Right: Shannon diversity score of 
UTI negative data. Density is the number of samples assigned a certain Shannon diversity score. 
 
 Given the relevance of E. coli to UTI symptoms, we next compared the E. coli sequence 

variants among the UTI positive and UTI negative samples. In total, 410 E. coli sequence 

variants were identified among the 27 E. coli-containing urobiome samples (23 UTI positive and 

4 UTI negative). The majority (70.73%) of these sequence variants are found only in one sample. 
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The most abundant sequence variant was identified in 12 of these samples, all UTI positive 

samples. While it was found in all these samples, it was typically found in low relative 

abundance (<5%). There were no sequence variants only found and found in all the UTI negative 

E. coli-containing urobiomes. This suggests that there is not a pathogenic and non-pathogenic E. 

coli “type.” Sequence variants observed in more than one of the UTI negative samples were also 

observed in more than one of the UTI positive samples. 

Discussion 

 In this chapter, we investigated the urobiomes of females that had UTIs and those that did 

not. We found species and genera associated with the urobiome from previous research, and 

other species that have not been documented as often (22,28,60,66,79,80). Utilizing PacBio 

sequencing also allowed us to examine possible strain-level diversity with sequence variants. 

UTI Positive Sample Taxonomy and Uropathogens 

The most abundant ASV in the UTI positive samples was E. coli, which is not surprising 

given it is the primary cause of acute UTIs (21,22). However, not all the UTI positive samples 

included E. coli (Figure 2.6). A. sanguinicola was the second most abundant ASV in the UTI 

positive samples, which has been investigated as a uropathogenic species (79). It is worth noting 

that A. sanguinicola was a contaminant present in the negative control sample, but because the 

samples were computationally decontaminated and the contaminants removed, that specific ASV 

was removed from the experimental data. A. sanguinicola and A. urinae have both been found in 

urobiomes associated with UTIs, but of the two, only A. sanguinicola was found in our UTI 

positive samples (79,81). A. christensenii was the only other Aerococcus species found in the 

UTI positive data (sample 7772), which has been linked with polymicrobial infection in the 
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vagina (82). Interestingly, A. christensenii (n=462) was found in sample 7772 at a higher 

abundance than A. sanguinicola (n=4). 

The next most abundant ASV was Klebsiella aerogenes. K. aerogenes was previously 

named Enterobacter aerogenes, but was renamed as it more closely resembles Klebsiella 

pneumonaie than the Enterobacter genus (83). While it has not yet been connected to UTIs, it 

has been connected to bloodstream infection (84). The next three most abundant ASVs are 

known uropathogens: P. aeruginosa, E. faecalis, and K. pneumoniae (25,80,85).  

Lactobacillus species, many of which are known to have strong commensal effects on 

uropathogens (28), were found in some of the UTI positive samples. L. iners was the most 

abundant Lactobacillus ASV found in the UTI positive data, but it was only found in sample 

7772 (n=2,911). It was the most abundant taxonomic classification in the sample with a relative 

abundance of 32.56%. The next most abundant Lactobacillus ASV was L. jensenii, found in 

samples 7653 (0.23%), 7715 (0.4%), 7772 (0.04%), 7805 (0.07%), and 7806 (1.37%). L. 

cristpatus (n=30), L. fornacalis (n=30), and L. gasseri (n=35) were all found in trace amounts.  

UTI Negative Samples and the Lack of E. coli 

 In a 2019 review article, Lactobacillus, Gardnerella, and Streptococcus were the most 

common genera found in asymptomatic female urobiomes (60,77). All three genera were present 

in the ASV classifications of our UTI negative data, with Lactobacillus and Gardnerella 

classifications more common than Streptococcus. While Lactobacillus strains have previously 

shown commensal effects on uropathogens, our data presented showed that their presence was 

not the deciding factor on if E. coli was present in the community. Similar to the UTI positive 

samples, L. iners was the most abundant Lactobacillus species in the UTI negative data. It was 

found in five samples at low abundances (sample 4339 - 0.06%, 4338 - 6.94%, 4646 - 0.45%, 
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4668 - 2.67%, and 4814 - 0.02%). In the samples where L. iners was found in the UTI negative 

data, there was no E. coli found except for one, sample 4646. In contrast to other Lactobacilli, L. 

iners is the only species that has not been associated with antimicrobial properties as it does not 

produce either H2O2 or lactic acid, rather producing a cytotoxin (86). Furthermore, in the vaginal 

microbiota, L. iners has been associated with bacterial vaginosis (87). L. iners was recently 

identified as a dominant member of some asymptomatic female urobiomes (68). 

The next most common Lactobacillus was L. gasseri, which was found in sample 4646 

(0.03%), 4668 (0.03%), 4851 (0.06%), and 4749 (0.2%). L. crispatus was the next most 

abundant with 108 ASVs classified, and the other Lactobacillus species were found in trace 

amounts (L. jensenii n=76, L. paragasseri n=34, L. taiwanensis n=7. and L. kitasatonis n=2). E. 

coli was found in samples that contained L. crispatus and L. gasseri, showing that the presence 

of a Lactobacillus species alone will not completely destroy E. coli, as has been previously 

observed (14,28,60). Other previously found community members for the healthy urobiome were 

found in low abundance. Another known healthy urobiome community member is Gardnerella 

vaginalis, which we found in samples 4339 (0.1%), 4388 (0.18%), 4668 (0.2%), 4851 (0.36%), 

and 4979 (0.69%) (60). Although G. vaginalis has been seen in the healthy urobiome, recent 

study shows that it can be present in recurrent UTIs (77,88). Streptococcus has also been 

associated with the healthy urobiome (60). Two Streptococcus species were found, S. 

thermophilus and S. alactolysticus, at low abundance (n=9 and n=5 ASVs across all UTI 

negative samples respectively).   

Most of the UTI negative samples had a low abundance of E. coli, except for one, sample 

5461 (Figure 11). The individual sample 5461’s sequence variant abundances are plotted in 

Figure 11, showing the sample had all 22 sequence variants found in the UTI negative group. 
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After consulting the metadata for the sample, it was confirmed that this patient had gone to the 

hospital for a different reason, and after a urine test, it was found that they had a large amount of 

E. coli in their urinary tract. This patient had substantial amounts of E. coli in their urinary tract 

but was asymptomatic, so a clinical UTI diagnosis was not made. With the E. coli variants 

present in sample 5461, as well as samples 4646 and 4979, we confirm earlier studies finding E. 

coli in the “healthy” urobiome (60,89). 

Similarities Between UTI Positive and UTI Negative Taxonomies: Ralstonia and Delftia  

There were some major similarities found in the UTI positive and UTI negative 

taxonomies, notably the presence of R. pickettii and D. tsuruhatensis. Ralstonia, in particular the 

species R. pickettii and R. solanacearum, were once classified as Pseudomonas species but they 

were removed and reclassified as a new genus Ralstonia due to phenotypic properties (90). It 

should be noted that two ASVs classified as R. pickettii were present in the mock communities 

after decontamination, but in the experimental samples they are present at significantly higher 

abundances. We hypothesize that either Ralstonia is present in the urobiome (despite not 

previously being isolated via culture methods) or it was introduced via contamination in the lab 

or collection method. R. insidiosa has previously been mentioned in regard to contamination of 

metagenomic samples (91). Contamination could be introduced via the collection method 

(catheterization here), the processing of the sample (collection tube, addition of AssayAssure), 

the DNA extraction kit, the library preparation kit, or the sequencing itself. Negative controls for 

the library prep and sequencing, however, did not produce reads thus removing the last two 

possibilities from our list. R. pickettii was found at varying relative abundances throughout the 

UTI positive and negative samples. The other possibility is that R. pickettii is a urobiome 

community member that has not been extensively documented, possibly because of its lack of 
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ability to be cultured with the EQUC procedure (9). In a recently published paper examining the 

female asymptomatic urobiome using 16S sequencing (V1-V8), R. mannitolilytica was found 

and notably, it could not be found by culturomics (68). R. mannitolilytica was also identified in 

long-read 16S sequencing of urinary samples and assigned to one of the observed urotypes (68). 

Shotgun metagenomic sequencing of urinary samples has also found Ralstonia (no species 

assignment) in UTI positive samples (92). 

A similarity between R.pickettii and D. tsuruhatensis is their growing prevalence in 

serious hospital-related infections; strains of Delftia have proven to be fatal in some cases like 

Ralstonia (93). That furthermore begs the question of why those species are found in the 

urobiomes of patients without UTIs at such high abundances. Their presence in our UTI data is 

also interesting because our data was not collected from hospital related UTIs. A characteristic 

that Delftia has that Ralstonia does not have is its proximity to UTIs; while no UTIs directly 

caused from D. tsuruhatensis have been recorded as of 2022, UTIs caused by its close genetic 

cousin D. acidovorans have (94). Like D. tsuruhatensis, D. acidovorans is a rare opportunistic 

pathogen that is most commonly found in immunocompromised patients and is resistant to 

several antibiotics (95). These species are extremely difficult to tell apart; in one study of an 

infant with a D. tsuruhatensis infection in the lungs, the MALDI-TOF result was the pathogen 

was D. acidovorans and the 16S rRNA sequencing result was it was D. tsuruhatensis (96). Note, 

this species has also been called Comamonas acidovorans and Pseudomonas acidovorans 

previously, which only adds to the possibilities of these species being confused for another (97). 

Both Delftia species have been found in water and soil, as well as on medical equipment (97). In 

a case of D. acidovorans causing a complicated UTI, it was hypothesized that the pathogen was 

introduced via long-term urinary catheter (97). A different D. tsuruhatensis infection was 
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similarly introduced via intravenous catheter (94). Both Delftia species discussed and Ralstonia 

species have much in common: they are both originally environmental pathogens, they have a 

history of causing infection in a healthcare setting, both show patterns of antibiotic resistance, 

and they can cause serious infection. They are also both prevalent species in both the UTI and 

UTI negative data. 

Differences Between the UTI Positive and UTI Negative Samples 

 While the UTI positive and UTI negative samples shared abundances of R. pickettii and 

D. tsuruhatensis particularly within the mixed urotype, the datasets had differences in overall 

taxonomic composition. The main difference can be seen in the number of urotypes: the UTI 

positive had six urotypes and the UTI negative data had two, and if sample 5461 was removed, 

the UTI negative samples would have one urotype: mixed. This shows that potentially 

uropathogenic species often take over the urobiomes they inhabit and are not present in 

asymptomatic urobiomes. Klebsiella was found in two samples, 5461 (n=2) and 4821 (n=1), 

although its presence is probably a false classification because the abundance is so low. 

Enterococcus (n=12) and Aerococcus (n=4) were also found in trace amounts across all UTI 

negative samples. Pseudomonas (n=293) was found in a higher abundance than the other 

uropathogens, making up 1.7% of sample 4979. Escherichia was the most commonly found 

potentially uropathogenic genus in the UTI negative samples, with an abundance of 675 across 

all samples except for 5461, which had an abundance of 80,999. Note, this value is for 

Escherichia genus classifications, as E. coli itself was not found in every sample.  

When E. coli sequence variants were examined, we found that the UTI positive had 393 

distinct E. coli ASVs and the UTI negative had 22. 17 of the sequence variants were only found 

in UTI negative samples (5461, 4646, and 4647), although one variant was not seen in all the 
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UTI negative samples and not in any UTI positive samples. This shows that there is a difference 

in the E. coli strain composition between uropathogenic E. coli and other E. coli that can exist in 

the urobiome without incidence of infection, but there is not a distinct type or sequence that we 

can identify from our data. A further direction of this study could be investigating these sequence 

variants more, and determining indicators that may make one sequence variant uropathogenic 

and another a non-infectious community member.  

Conclusion 

 In this chapter, we investigated the urinary microbiome of patients that were UTI positive 

and UTI negative using PacBio long-read data. Utilizing PacBio sequencing allowed for our 

classifications to reach the species level with relative accuracy, as shown by our mock 

community results. Many of the UTI positive samples had a large abundance of uropathogenic E. 

coli, but we also found that some UTI positive samples did not contain large amounts of E. coli 

or any E. coli at all. In those samples, R.pickettii and D.tsuruhatensis were abundant among 

many other classifications, resulting in a mixed urotype. Other pathogens like Aerococcus, 

Enterococcus, Klebsiella, and Pseudomonas were found to take over the majority of 

classifications, resulting in a more species-dominant urotype than the mixed samples. In the 

samples of UTI negative patients, many of the ASVs were classified as R. pickettii and D. 

tsuruhatensis in a mixed urotype composition. We also found that some of the UTI negative 

patients had E. coli in their urinary microbiomes, conferring with prior studies finding E. coli in 

the “healthy” urobiome.
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CHAPTER THREE 

LONG-READ SEQUENCING VERSUS SINGLE VARIABLE REGION 16S rRNA 

SEQUENCING 

Introduction 

 With the decreased cost of long-read sequencing, its application has expanded from 

whole genome sequencing projects to also include amplicon sequencing studies, such as 16S 

surveys. Long-read sequencing can capture all nine variable regions in contrast to short-read 

sequencing, which only captures one or a few variable regions. The majority of 16S surveys 

conducted to date, however, relied on short-read sequencing. Given the limited amplicon length 

of short-read sequencing, prior studies identified the best variable region to sequence for a 

microbial community by comparing the taxonomic resolution of single variable regions whole 

16S rRNA gene sequences (98). Previously utilized variable regions for the urobiome include 

V1-V3, V4-V6, and V4 alone, with the later variable regions (V6-V9) not being recommended 

or utilized as often (11,14,99). General guidelines for 16S surveys of urobiome samples have 

been recommended (100). 

 Sequence amplicons for commonly used primers for short-read 16S rRNA sequencing 

were compared for their ability to identify taxa of the urobiome (99). In this study, amplicon 

sequences were computationally generated from full length 16S rRNA gene sequences from 

urobiome whole genome sequences (101). DADA2 was used to identify ASVs, and species were 

predicted using both a BLCA classifier and naive Bayes algorithm. They found that the database 

used had the biggest impact on taxonomy found. They also found that multiple variable regions
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 (i.e., V1-V3 or V2-V3) are better for taxonomic accuracy than single variable regions (i.e., V4), 

and the taxonomy found from these regions was relatively accurate.  

 Recently, computationally derived variable region amplicons derived from full-length 

long-read 16S rRNA gene sequences (rather than whole genome sequences) have also been 

compared, but for the gut microbiota (31). Furthermore, this study additionally conducted short-

read sequencing. They used the QIIME pipeline to create OTUs clustered at 97% and used the 

SILVA (v132) database to assign taxonomy (31). They found that the taxonomies assigned to the 

long-read 16S rRNA amplicon sequences and the artificially created variable regions were more 

different than the artificially created variable regions and the short-read sequencing variable 

regions, which were more similar. They concluded that it was not necessarily the type of 

technology that would provide more information about the community, but the length of the 

amplicon that was more effective in resolving taxonomy. 

The precedent set by both papers provides a solid foundation to attempt to mimic variable 

region data from our PacBio urobiome data and compare the taxonomy assigned to the taxonomy 

found from the full length 16S reads. Comparing taxonomy found from full-length sequences 

and short-read sequences can reveal bacterial genera that have been previously over or under-

represented in previous urinary microbiome research that resulted from the type of sequencing 

used. It is important to note that the term “single variable 16S sequencing” may refer to multiple 

variable regions (i.e., V1-V3) in this chapter, but because it does not include the entire 16S gene, 

it will be referred to as single variable. 
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Methods 

Multiple Sequence Alignment 

 Two variable regions, V1-V3 and V4, were computationally parsed from our PacBio 

reads using the methodology developed in the Hoffman et al. paper (30). The PacBio reads were 

first converted from fastq format to fasta format using SeqKit 

(https://github.com/shenwei356/seqkit). The fasta format files were then aligned to the E. coli 

16S rRNA gene sequence (Accession No. EU014689.1) using MUSCLE (v5) with the “-

clwstrict” parameter specified (102). Alignment to the E. coli reference sequence is necessary to 

identify the location of the PCR primers and thus amplified sequence for the variable regions. 

The hybridization sites were identified within these alignments for the following primers 

sequences: V1: 27F (AGAGTTTGATCCTGGCTCAG), V3: 534R 

(ATTACCGCGGCTGCTGG), V4: 515F (GTGCCAGCMGCCGCGGTAA) or 806R 

(GGACTACHVGGGTWTCTAAT). Based upon these hybridization sites, the expected 

amplicon sequence was parsed from the full-length sequence for each read.  The fasta format 

files had to be converted back to fastq file format for DADA2 analyses.  

DADA2 Analysis  

The samples were run through DADA2 in the same order as detailed in the previous 

chapter's methods. Because the sequences were changed to fasta format for the multiple sequence 

alignment, the quality scores associated with the sequences were lost. Therefore, the DADA2 

error model algorithm could not be used. Sequences that did not align to the complete reference 

gene region were removed. We also removed the ASVs that had a count of 1 because the DADA 

algorithm removes singletons. Next, taxonomy was assigned within the pipeline using the 

assignTaxonomy() function with the SILVA database, as detailed in Chapter 2. 
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Data Visualization 

 To create the heatmaps (Figures 3.4 and 3.5), ASV tables of all the combined ASVs 

between UTI positive and UTI negative data were created. The values in the tables were made 

into relative abundances per patient using the make_relative() function from the R package 

“funrar” (72). The melt() function from the “reshape2” package was used to reformat the tables 

for visualization using “ggplot2” (73,75).  

Statistics 

 To investigate the differences between the V1-V3 and PacBio taxonomic classifications 

and the differences between the V4 and PacBio taxonomic classifications, relative abundances 

were calculated. Paired t-tests were used for the V1-V3 data, and the Wilcoxon Rank sum test 

was used for the V4 data (correct for lower number of samples). Because the ASV abundances 

were highly variable from patient to patient, an FDR (or Benjamini-Hochberg) correction was 

used to normalize the p-values that were outputted from the tests. The “reshape2” package was 

used to manipulate the data and “ggplot2” was used for visualization (73,75). The 

aforementioned statistical analyses were conducted in R.  

Results 

 Because short-read 16S sequencing cannot reliably classify to the species level, our 

comparison of long-read and computationally generated variable region amplicons will be at the 

genus level. The results are presented in the following order: Mock communities, V1-V3 

individual results for UTI positive and negative data, V4 individual results for UTI positive and 

negative data, a comparison of the relative abundances of V1-V3 and V4 taxonomic 

classifications, and the comparisons of the V1-V3 region to PacBio data and V4 region to PacBio 

data.  
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Mock Communities 

The genera in the mock communities were Escherichia (with five separate strains, four 

phylotypes), Staphylococcus, Proteus, and Enterococcus at varying concentrations. As shown in 

Figure 13, the long-read sequencing captured the four genera tested. Ten genera were assigned 

within the V1-V3 region, with the four known community members being the most abundant. 

The additional six genera (Ralstonia, Enterobacteriaceae NA, Aerococcus, Mesorhizobium, 

Delftia, and Rhizobium) made up 0.15% of Mock Community 1 and 0.18% of Mock Community 

2 (Figure 13). Only Ralstonia was identified by the PacBio sequencing. Taxa that could not be 

classified at the genus level were rare: 5 out of 13,429 ASVs for Mock Community 1 (0.04%) 

and 2 out of 10,852 ASVs of Mock Community 2 (0.02%) were classified as “NA”.  

Fourteen genera were identified by the V4 data not included in the mock communities. 

Five of these genera, Ralstonia, Enterobacteriaceae NA, Delftia, Rhizobium, and Mesorhizobium, 

were also identified during our V1-V3 analysis. The V4 classifications included additional 

misclassifications, many of which were not able to be classified to the genus level. In Mock 

Community 1, 481 ASVs were classified as “NA” for their genus (Enterobacterales NA, 

Morganellaceae NA, Enterobacteriaceae NA, Staphylococcaceae NA, Bacilli NA, 

Lactobacillales NA, and Bacillaceae NA) making up 1.7% of classifications. In Mock 

Community 2, 61 ASVs were NA at the genus level, 0.2% of classifications. Both values are 

greater than the mock community NA abundances from the V1-V3 regions (0.04% and 0.02% 

respectively.)  
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Figure 13. Pie charts showing abundances of ASVs in mock community samples according to 
the V1-V3 regions (top) and the V4 region (bottom). 
 
V1-V3 Classifications of Urobiome Samples 

Analysis of the 33 UTI positive samples using the V1-V3 data lead to the identification 

of 106 taxonomic classifications with the most abundant taxon being Escherichia Shigella 

(n=286,365, 37.34% of ASVs), and the next most abundant taxon being Ralstonia (n=204,770 

26.62% of ASVs). The next most abundant genus was Aerococcus, which has been associated 

with UTIs before (79). Aerococcus was mainly found in sample 7758 (n=51,181, 98.99%) and 

sample 7805 (n=12,296, 57.34%). The next most abundant ASV classification was Delftia, 

which was found in almost every UTI positive sample (n=29,483, 3.83%). The next most 

abundant genera have all been associated with causing UTIs before: Pseudomonas (3.18%), 

Klebsiella (2.98%), and Enterococcus (n=22,741, 2.95%) (25,80,85). We found Lactobacillus 

(0.45%), Gardnerella (0.42%), and Sphingomonas (0.31%), all of which have been observed in 

the healthy urobiome (60,101).  
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The V1-V3 data also showed a pattern of one microbe often dominating a community. As 

Figure 14 (right) shows, UTI samples dominated by Klebsiella, Pseudomonas, Aerococcus, or 

Enterococcus (samples 7651, 7654, 7674, 7714, 7758, and 7803) had little or no ASVs assigned 

for the genera Escherichia or Ralstonia. Note, sample 7674 is assigned the Klebsiella urotype 

because although Klebsiella is not a majority of ASVs, it also includes a significant number of 

ASVs assigned to Enterobacteriaceae NA and Klebsiella is a member of Enterobacteriaceae. 

In the UTI negative samples (Figure 14 left), we found an abundance of Ralstonia 

(n=126,801, 49.64%) ASVs. The second most abundant ASV was Escherichia (n=72,586, 

27.65%). The majority of Escherichia ASVs came from sample 5461, which had 72,092 

Escherichia ASVs and a relative abundance of 99.88%. The third most abundant genus was 

Delftia (n=17,450, 7.76%). Other frequently identified taxa include Rhizobium (n=13,069, 

4.98%), Mesorhizobium (n=7,060, 2.69.%), and Candidatus Obscuribacter (n=5,290, 2.01%). 

Lactobacillus is another important community member in UTI negative samples, and it was the 

7th most abundant ASV (n=2,238, 0.85%). Sphingomonas was the next most abundant 

classification (n=1,706, 0.65%). In the UTI negative data, we observed two urotypes: mixed and 

Escherichia (sample 5461). 
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Figure 14. Relative abundances of UTI positive and UTI Negative samples for the V1-V3 region. 
The top 25 genera from both sets of classifications are plotted.  
 
V4 Classifications of UTI Positive and Negative Samples 

 Next, we examined the UTI positive samples’ predictions based upon the V4 region. The 

most abundant ASV in the UTI positive samples was Escherichia Shigella (n=416,844, 44.24%). 

The next most abundant ASV was Ralstonia (n=226,832, 24.08%). The third most abundant 

ASV was Aerococcus (n=84,187, 8.93%). The next top ASVs include Klebsiella (5.54%), 

Delftia (3.72%), Rhizobium (2.84%), Pseudomonas (2.78%), and Enterococcus (2.58%). 

Mesorhizobium was another frequently identified genus (1.15%). Lactobacillus (0.39%), 

Sphingomonas (0.31%), and Gardnerella (0.38%) were also found at similar concentrations to 

the V1-V3 classifications.  

 Next, we examined the V4 classifications for the UTI negative samples. In the V4 UTI 

negative samples, there were 124 distinct taxonomic classifications. The most abundant 

classification was Ralstonia (n=144,189, 47.49%), followed by Escherichia Shigella (n=81.684 

26.9%), and Delftia (n=24,261, 8.0%). Again, the majority of Escherichia Shigella ASVs were 
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in sample 5461 and without the sample, the relative abundance drops dramatically from 26.9% to 

0.29%. Rhizobium (5.45%) and Mesorhizobium (2.92%) were next, followed by Candidatus 

Obscuribacter (2.1%). Lactobacillus (0.83%) and Sphingomonas (0.74%). Gardnerella was less 

abundant (0.11%). 

 In the UTI positive samples, we found Escherichia, Klebsiella, Enterococcus, 

Pseudomonas, and Aerococcus urotypes, as well as the general mixed urotype. In the UTI 

negative dataset, we found the mixed and Escherichia urotypes, with the mixed urotype often 

dominated by Ralstonia.  

 

 

Figure 15. Relative abundances of UTI positive and UTI Negative samples for the V4 region. 
The top 25 genera from both sets of classifications are plotted.  
 
Comparison of V1-V3, V4 and Full-length 16S Predictions for the UTI Positive Data 

 Generally, in the UTI Positive data, there were not many differences between the V1-V3, 

V4, and PacBio classifications. Across all three sets of data analyzed and for all samples 

examined, 190 different taxa were identified. Because our statistical analysis required non-zeroes 

as abundances for comparison, 118 taxa (72 were dropped) were compared between V1-V3 and 



 51 
PacBio, and 123 taxa (63 dropped) were compared between V4 and PacBio. We found that in the 

V1-V3 results, only one genus, Ralstonia, was overrepresented, meaning that it was found more 

frequently in the V1-V3 results than in the PacBio results. Rhizobium, Acidovorax, Delftia, and 

Burkholderiaceae NA were found to be underrepresented in the V1-V3 results. In the V4 results, 

Ralstonia and Oxalobacteraceae NA were overrepresented, and the same four genera identified 

underrepresented in the V1-V3 were found to be underrepresented in the V4 data. While the 

predicted taxa between the two tested variable regions do differ from PacBio, most of the taxa in 

the UTI positive samples remain significantly similar to PacBio. 

 
Overrepresented V1-
V3 

Underrepresented 
V1-V3 

Overrepresented V4 Underrepresented 
V4 

Ralstonia Rhizobium Ralstonia Rhizobium 

 Acidovorax Oxalobacteraceae NA Acidovorax 

 Delftia  Delftia 

 Burkholderiaceae NA  Burkholderiaceae NA 

 
Table 4. Over- and underrepresented genera of variable region classifications compared to 
PacBio classifications for the UTI positive data. 
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Figure 16. Heatmap of relative abundances of taxa in the UTI Positive samples according to the 
PacBio data (green), V1-V3 data (red), and V4 data (blue). The top fifty taxa shown are derived 
from the top 50 most abundant taxa from the PacBio classifications. Darker squares indicate 
higher relative abundance than lighter squares. 
 
Comparison of V1-V3, V4, and PacBio Predictions for the UTI Negative Data 

 In the UTI negative data, many more genera were found to be differentially predicted 

between the PacBio and computationally generated variable regions. In the statistical 

comparison, 123 taxa (67 dropped) were compared for our V1-V3 versus PacBio analysis, and 

131 (59 dropped) taxa were compared between V4 and PacBio. For the V1-V3 classifications, 

there were 11 genera identified in significantly different abundances than they were in the 

PacBio analysis (Table 5). Only two of these genera are underrepresented in the V1-V3 data: 

Ralstonia and Acidovorax. For the V4 classifications, there were 20 significantly different 
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classifications from the PacBio data (Table 5). Similar to the V1-V3 data, most (n=18) of these 

genera are overrepresented in the V4 classifications. The two underrepresented genera were 

Ralstonia and Acidovorax, the same two genera that were underrepresented for the V1-V3 

region. Table 5 shows the over- and underrepresented genera from the V4 data regarding the 

PacBio predicted abundances. Of note is the overrepresentation of Escherichia Shigella; both 

variable regions examined are reporting more ASVs for Escherichia Shigella than were 

identified in the PacBio sequencing. 

 
Overrepresented V1-
V3 

Underrepresented 
V1-V3 

Overrepresented V4 Underrepresented 
V4 

Bosea Ralstonia Rhodococcus Ralstonia 

Bradyrhizobium Acidovorax Geobacillus Acidovorax 

Xanthobacteraceae NA  Burkholderiales NA  

Qipengyuania  Shinella  

Devosia  Anoxybacillus  

Sphingomonas  Rhizobiaceae NA  

Candidatus 
Obscuribacter 

 Bradyrhizobium  

Anoxybacillus   Candidatus 
Obscuribacter 

 

Escherichia Shigella  Devosia  

  Bosea  

  Xanthobacteraceae NA  

  Sphingomonas  

  Escherichia Shigella  
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  Methylobacterium 

Methylorubrum 
 

  Qipengyuania  

  Renibacterium  

  Rhizobiacaea NA  

  Methylibium  

  Oxalobacteraceae NA  

  Sediminibacterium  

 
Table 5. Over- and underrepresented genera of variable region classifications compared to 
PacBio classifications for the UTI negative data. 
 

 

Figure 17. Heatmap of relative abundances taxa in the UTI negative samples according to the 
PacBio data (green), V1-V3 data (red), and V4 data (blue). The top fifty taxa shown are derived 
from the top 50 most abundant taxa from the PacBio classifications. Darker squares indicate 
higher relative abundance than lighter squares 
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Discussion 

Examining the differences between the taxonomic profiles predicted by different variable 

regions provides insight into the best variable regions for accurate characterization of the 

urobiome. Furthermore, comparison of the short-read and full-length sequence taxonomic 

assignments enables us to assess the cost-benefit of long-read sequencing. Prior assessments of 

the strengths/limitations of the different variable regions for urobiome data has only examined 

genomes from isolated urinary taxa, with few representatives of different species or strains (30). 

Based upon this prior work, we expected our computationally simulated 16S variable regions to 

be similar to the PacBio results and fairly similar to the taxonomic predictions using other 

variable regions (30). Our results supported that finding. The longer variable region (V1-V3) 

more closely resembled the PacBio data, but the taxonomies found between variable regions 

(V1-V3 and V4) were still similar. 

The UTI positive samples for PacBio, V1-V3, and V4 all produced the same 6 urotypes. 

Five of those were dominated by known uropathogens, Escherichia, Aerococcus, Enterococcus, 

Pseudomonas, and Klebsiella, that were easily detected in all three analyses. While the most 

uropathogenic classifications remain the same, the less abundant taxa within them vary greatly. 

This presents a problem especially for the mixed urotype samples in which several low 

abundance taxa were not predicted by the variable region or not identified in the PacBio analysis. 

Because the causal agent of these UTI symptoms is unclear, taxonomic misclassifications 

increase the noise within these samples.   

In the UTI negative data, we found that Escherichia Shigella was overrepresented in both 

V1-V3 and V4 classifications. This was not an issue in the UTI positive data, probably because 

of the stronger Escherichia signal due to many samples containing a large abundance of E. coli. 
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This presents an issue for previous asymptomatic urobiome studies that utilized the V4 region, as 

overrepresentation of Escherichia and the additional noise generated from sequencing the V4 

region itself creates skewed results. Interestingly, Escherichia was not overrepresented in the 

V1-V3 region, showing a more accurate representation of the taxonomy of the community.  

The Hoffman paper concluded that while the V4 region did not classify correct taxonomy 

as much as V1-V3 and V2-V3 regions, it was still a valid classification region depending on the 

depth of taxonomic resolution a study required (30). They found that V4 (with the NCBI 16S 

database) correctly classified 52 out of 78 at the species level, which they decided is 

“reasonable” (30). Their study does not capture the variation that is inherent in real urine 

samples, though, which would lower accuracy due to additional noise in the sequences (30). We 

found that while our data generally supported their results of V4 being a decent classifier, it was 

also contingent on the type of community (UTI positive or negative) sequenced. The V4 region 

results were more similar to the PacBio results for the UTI positive data, than they were for the 

UTI negative data. This indicates that variable region selection should be based on the type of 

community sequenced. The UTI positive samples had a much higher abundance of sequences 

able to be classified, and those samples had less noise because they were often dominated by a 

single uropathogen. We thus do not recommend V4 sequencing of UTI negative urobiome 

samples. 

Conclusion 

 In this chapter, we reclassified the PacBio sequences using single variable region data 

that was computationally created. The most accurate classifications to the PacBio data were the 

V1-V3 regions of UTI positive data, with 5 significantly different taxa across all classifications. 

We found that the V1-V3 region more accurately predicted the taxonomies found by the PacBio 
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sequencing, especially regarding the UTI negative samples. The V4 taxonomic classifications 

were not as accurate as the PacBio taxonomy, and if the PacBio is treated as the gold standard in 

this study, therefore cannot be recommended to survey the urobiome. We also found that in UTI 

negative samples, taxonomy was much more variable than the UTI positive samples, indicating 

that a lower biomass will create classifications with more noise. Because of this, and the 

overrepresentation of Escherichia in UTI negative samples, we do not recommend V4 

sequencing of asymptomatic urobiomes. We recommend V1-V3 sequencing over V4 sequencing 

for the urinary microbiome for more accurate taxonomic classifications, but ultimately PacBio 

provides the most accurate taxonomic classifications for 16S gene surveys. 
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CHAPTER FOUR 

CHARACTERIZING STRAIN-LEVEL VARIATION OF URINARY TRACT INFECTIONS 

USING SHOTGUN METAGENOMIC SEQUENCING 

Introduction 

 In contrast to 16S rRNA gene sequencing, shotgun metagenomics sequences all of the 

genomic material in a sample. The goal with utilizing shotgun sequencing in the context of the 

urobiome is to derive more information about the community itself; shotgun sequencing can 

provide insight into the presence genes other than the 16S rRNA as well as extrachromosomal 

components and non-prokaryotic constituents like fungi and bacteriophages. Some work has 

been done characterizing the urobiome with shotgun metagenomic sequencing data. Initial 

urobiome analyses with shotgun data support generally the major UTI pathogens that have been 

identified by 16S rRNA gene surveys and isolates including:  Escherichia, Klebsiella, 

Pseudomonas, Enterobacter and Citrobacter (92). This study also found that Gardnerella 

vaginalis was represented more in shotgun reads, and in general Lactobacillus and Provotella 

species were found more commonly in women (92). Many urobiome studies using shotgun 

metagenomics are directly interested in applying the technology to healthcare due to the nature 

of the data; shotgun metagenomic sequencing provides more information than just the taxonomy 

of the community, including the functionality encoded by the microbiota (103,104). 

 A benefit to using shotgun metagenomic is that fine-scale variation can be resolved from 

the sequences. As mentioned in the introduction, none of the contemporary tools for assigning 

strain level diversity to shotgun metagenomic data are perfectly accurate. Previous work in our 
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lab has identified STRONG as the best option available (105). In examining urobiome data sets 

from asymptomatic individuals, strains of the same species could be identified. This finding was 

pivotal in determining that even though the urinary tract is a low biomass community, especially 

in asymptomatic individuals, there can be multiple different strains of the same species 

inhabiting this niche and they can be identified via shotgun metagenomic sequencing. 

 In this chapter, we use shotgun metagenomic sequencing to assign taxonomy and find 

strain-level variation in a subset of the samples examined in Chapters 2 and 3 by 16S rRNA 

sequencing, including 15 UTI positive and 2 UTI negative samples as well as the two mock 

communities. We compare the taxonomies predicted here to those from full-length 16S rRNA 

gene sequencing from Chapter 2. Additionally, we conducted strain-level detection via STRONG 

and examined the strain-detection capabilities of both shotgun metagenomics and full-length 16S 

rRNA gene sequencing approaches.  

Methods 

Samples and Sequencing 

 For our shotgun metagenomic sequencing, we sequenced 15 of the 33 UTI positive 

samples and 2 of the 14 UTI negative samples giving a total of 17 samples to be analyzed. These 

samples include: 4821, 5461, 7531, 7651, 7654, 7672, 7676, 7707, 7714, 7720, 7771, 7772, 

7775, 7785, 7786, 7791, and 7803. These samples were chosen because the extractions produced 

sufficient DNA for shotgun sequencing without amplification. The same DNA extractions used 

for the 16S PacBio sequencing (Chapter 2) were used for shotgun metagenomic sequencing.  The 

17 samples were sequenced at MIGS (Pittsburgh, PA). Libraries were prepared by MIGS using 

the Illumina DNA Prep kit and IDT 10bp UDI indices, and sequenced on an Illumina NextSeq 

2000, producing 2x151bp reads. 
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From previous work done in the lab with this data, we knew that these samples contained 

significant amounts of host DNA from analysis done with MGRast (106). Bowtie2 (v2.4.5) was 

used to align the reads to a human genome using the Bowtie2 precomputed human host genome 

GRCh38; aligned reads were removed from subsequent analyses (107). 

Taxonomic classification 

 The tool Kraken2 (v2.08-beta) was used to classify taxonomy with the filtered shotgun 

metagenomic data (52). It was used with the pre-assembled database Standard-16, found at the 

tool’s GitHub repository (https://benlangmead.github.io/aws-indexes/k2), which was last updated 

on 9/26/22. The only change to default parameters in the Kraken2 command was the addition of 

“--use-names” which switched the output from a Kraken2 database taxonomic ID to the 

scientific name of the species. 

Examining Strain-Level Diversity 

 As mentioned above STRONG (STrain Resolution ON Graphs) was chosen to 

specifically examine strain-level diversity in the shotgun metagenomic data. Its intended purpose 

is to compare strains that appear in all samples in an input group, but for our purposes, we 

compared samples against each other to extract strains present in each sample. Within STRONG, 

the user defines which algorithms to use to assemble and bin reads. We used SPAdes (v3.14), the 

default for STRONG, with read length 150 and k=77 to assemble the reads. We chose concoct 

(v1.0) to be the binning algorithm to create the bins, with a contig size of 1000 (108). After 

STRONG successfully created bins, the sequences from the bins were compared against the 

GenBank nr/nt database via BLAST to assign taxonomy (109). 
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Statistical Analysis 

 Statistics determining significantly over or under-represented taxa were repeated from 

Chapter 3 using the Wilcoxon sum rank test.  

Results 

Mock Community 

 The two mock community data sets were merged for our analysis here. In total, 53 

taxonomic species-level classifications were made that ranged from a general classification of 

Bacteria NA (n=42), to as specific as species. Because shotgun sequencing has been shown to 

not capture relative abundance, we focus here instead on what classifications were true to the 

known community members. When Kraken2 cannot resolve a species-level classification, it 

classifies the sequence as the next known taxonomic order (53). 

 
Classification Count E. coli E. faecalis P. mirabilis S. epidermidis 

Bacillales NA 4 - - - + 

Bacteria NA 42 + + + + 

Citrobacter 
amalonaticus 

3 - - - - 

Citrobacter 
freundii 

2 - - - - 

Citrobacter koseri 1 - - - - 

Citrobacter NA 3 - - - - 

Citrobacter 
sedlakii 

1 - - - - 

Enterobacter 
bugandensis 

1 - - - - 
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Enterobacter 
cloacae 

1 - - - - 

Enterobacter 
hormaechei 

2 - - - - 

Enterobacter NA 1 - - - - 

Enterobacterales 
NA 

116 + - + - 

Enterobacteriaceae 
NA 

3278 + - - - 

Enterococcus 
faecalis 

21 - + - - 

Enterococcus NA 16 - + - - 

Escherichia albertii 9 - - - - 

Escherichia coli 3754 + - - - 

Escherichia 
fergusonii 

6 - - - - 

Escherichia 
marmotae 

4 - - - - 

Escherichia NA 239 + - - - 

Gammaproteobacte
ria NA 

61 + - + - 

Klebsiella 
grimontii 

1 - - - - 

Klebsiella NA 6 - - - - 

Klebsiella 
pneumoniae 

10 - - - - 

Klebsiella 
quasipneumoniae 

1 - - - - 

Kosakonia NA 2 - - - - 
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Lactiplantibacillus 
NA 

2 - - - - 

Lactobacillus 
jensenii 

1 - - - - 

Lelliottia amnigena 1 - - - - 

Morganellaceae 
NA 

5 - - + - 

Pluralibacter 
gergoviae 

1 - - - - 

Proteobacteria NA 16 + - + - 

Proteus columbae 1 - - - - 

Proteus mirabilis 94 - - + - 

Pseudescherichia 
vulneris 

1 - - - - 

Raoultella 
terrigena 

1 - - - - 

Salmonella 
enterica 

7 - - - - 

Salmonella NA 5 - - - - 

Shigella boydii 4 - - - - 

Shigella 
dysenteriae 

3 - - - - 

Shigella flexneri 5 - - - - 

Shigella NA 3 - - - - 

Shigella sonnei 1 - - - - 

Staphylococcaceae 
NA 

5 - - - + 

Staphylococcus 
aureus 

4 - - - - 
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Staphylococcus 
capitis 

3014 - - - - 

Staphylococcus 
caprae 

1 - - - - 

Staphylococcus 
epidermidis 

134 - - - + 

Staphylococcus 
haemolyticus 

14 - - - - 

Staphylococcus 
hominis 

3 - - - - 

Staphylococcus NA 111 - - - + 

Staphylococcus 
saccharolyticus 

1 - - - - 

Staphylococcus 
xylosus 

1 - - - - 

 
Table 6. Table of species-level classifications of the mock communities. Pluses and minuses 
indicate a correct classification or if the classification is a higher order of the species. 
  
 When discussing the taxonomy found in the mock communities, it is not as simple as 

saying that a species was there or it was not, as when Kraken2 cannot classify a species, it moves 

the classification up a taxonomic order. Because of this, many of the sequences from the mock 

communities were classified at the Family or Order taxonomic levels (Table 6). For example, 

every taxonomic level of E. coli was classified starting with Escherichia, then 

Enterobacteriaceae, Enterobacterales, Gammaproteobacteria, Proteobacteria, and Bacteria 

(Table 6). From Enterobacterales up until Bacteria, these classifications are shared with Proteus 

mirabilis. We can conclude that the sequences classified to Enterobacteriaceae probably belong 

to E. coli, but the other classifications within Enterbacterales, Gammaproteobacteria, and 

Proteobacteria could belong to either of the two species, although it is important to note that a 
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significantly more volume of E. coli was added to the mock communities during preparation 

(Chapter 2 Methods). Other than the higher-level classifications of E. coli, many species level 

classifications were made within the family Enterobacteriaceae itself: 4 other species were 

classified within Escherichia including Escherichia NA, 5 species of Shigella, 5 species of 

Citrobacter, 4 species of Enterobacter, 2 species of Salmonella, 4 species of Klebsiella, and 1 

species within the genera Koskania, Lelliottia, Pluralibacter, and Pseudoescherichia each. We 

can assume that all of those classifications were misclassifications of the E. coli sequences as 

they are within the same family. 

 Staphylococcus was also misclassified at the species level. Instead of Staphylococcus 

epidermidis (n=134, 1.22%) being the most abundant taxon in the Staphylococcus genera, it was 

Staphylococcus capitis (n=3,014, 27.34%). Other Staphylococcus species misclassifications 

include S. aureus, S. caprae, and S. hominis. Unlike E. coli and P. mirabilis, all taxonomic levels 

of S. epidermidis were not represented: Staphylococcaceae and Bacillales are the family and 

order of the genus and are included in our classifications, but higher levels like the class (Bacilli) 

and phylum (Firmicutes) are not. E. faecalis is also a member of the class Bacilli and phylum 

Firmicutes. Enterococcus interestingly did not have species-level misclassifications, just the 

more general classification of Enterococcus NA. E. faecalis was practically absent from the 

mock community classifications (n=21). 

For the mock communities, we conclude that the taxonomic classifications from the 16S 

rRNA gene sequencing (PacBio) were more accurate than those from the shotgun metagenomic 

data. PacBio predicted the taxonomy of the mock communities with only 0.2% of ASV 

abundance being misclassifications, and the shotgun data’s misclassifications made up 64.8% of 

the predictive taxonomy assigned.  
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UTI Positive Sample Taxonomy 

 The genus and family taxonomic classifications were derived for each UTI positive 

sample (Figure 18). Five different urotypes, characterized by the identity of the predominant 

microbe(s) can be identified (110). The first urotype includes samples that are dominated by E. 

coli (Figure 18 left, pink). Samples 7707, 7720, and 7771 have >50% of its taxonomic calls 

attributed to E. coli. We also believe that samples 7775, 7785, and 7791 are likely dominated by 

E. coli. For these three samples, we see E. coli as well as Enterobacteriaceae (Figure 18 left, 

lavender), the taxonomic family for E. coli. The second, third, and fourth urotypes have a single 

representative in our samples, dominated by Klebsiella (Figure 18 left, gray) - sample 7651, 

dominated by Pseudomonas (Figure 18 left, olive) - sample 7714, and dominated by Proteus 

(Figure 18 left, red) - sample 7803. The final urotype is the mixed urotype, meaning that no one 

genus dominates the sample. The remaining samples are assigned to this urotype. It is worth 

noting that two of these mixed urotypes are in fact dominated by Ralstonia (samples 7672 and 

7772). 

 
 



 67 

 

Figure 18. Stacked bar chart of the relative abundances of classifications in the UTI positive 
samples, genus-level classifications on left and family-level classifications on the right.  
 

In addition to considering the genus calls by Kraken2, we also examined the taxonomic 

family-level identifications (Figure 18 right). Nine of these samples are dominated by 

Enterobacteriaceae (Figure 18 right, dark blue) - Samples 7651, 7676, 7707, 7720, 7771, 7775, 

7785, 7791, and 7803. These samples include the six we assigned to the E. coli urotype (samples 

7707, 7720, 7771, 7775, 7785, and 7791) as well as the Klebsiella urotype (sample 7651) and 

Proteus urotype (sample 7803). Both Klebsiella and Proteus are members of the family 

Enterobacteriaceae. Additionally, we find sample 7676 to be dominated by Enterobacteriaceae. 

When referring back to the genus classifications for this sample (Figure 18 left), it was a mixed 

urotype including taxonomic classifications of Proteus, E. coli, and Enterobacteriaceae. Sample 

7714 is dominated by Pseudomonadaceae (Figure 4.1 right, gray), the family for Pseudomonas. 

Samples 7654, 7672, and 7772 are dominated by the family Burkholdericeae (Figure 18 right, 

peach), the family for Ralstonia. Sample 7531 is mixed at the family level, containing 

Burkholderiaceae, Enterobacteriaceae, and Rhizobiaceae (Figure 18 right, teal). 
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UTI Negative Taxonomy 

 There were only two samples sequenced from the UTI negative dataset, samples 4979 

and 5461. While sample 4821 is clearly a mixed urotype, not dominated by any one genus 

(Figure 19 left) or family (Figure 19 right), sample 5461 is dominated by Ralstonia.  This sample 

also contains Enterobacteriaceae (Figure 19 right, dark blue), albeit at a low relative abundance. 

The two UTI negative samples’ urotypes resemble the UTI positive samples mixed urotypes 

dominated by Ralstonia (Figure 19, samples 7672 and 7772), both when considering the genus 

and family classifications.  

 

 

Figure 19. Stacked bar chart of the relative abundances of classifications in the UTI negative 
samples, genus-level classifications on left and family-level classifications on the right. Note, 
only two samples from the UTI negative cohort were sequenced using shotgun metagenomic 
sequencing. 
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Comparison of PacBio to Shotgun Metagenomic Sequencing Taxonomy 

 Next, we compared the taxonomic classifications by PacBio to those from the shotgun 

metagenomic sequencing via Kraken2 analysis. First, we considered the species-level 

classifications. As shown in Table 7, the number of shotgun taxonomic classifications exceeded 

those made by PacBio. Moreover, many of these shotgun taxonomic calls were not identified by 

PacBio. Those taxonomic classifications made only by PacBio were often represented in the 

shotgun taxonomic calls by close relatives, e.g., Bradyrhizobium elkanii was identified via 

PacBio for sample 4821 and, while it was not identified by Kraken in the shotgun analysis, 17 

other Bradyrhizobium species were. As is shown in Table 7, in most cases the majority of PacBio 

genus classifications were found both in the PacBio and Shotgun predictions. The two largest 

exceptions are Sample 5461 in which >60% of the PacBio ASVs were for taxonomies that were 

not identified by the shotgun data analysis. Also in sample 7771, >40% of the PacBio ASVs 

were for taxonomies that were not identified by the shotgun data analysis. Strikingly, there were 

several samples in which >80% of the shotgun sequence data was assigned to a taxonomic 

classification that was not predicted by the PacBio analysis: Samples 4821, 5461, 7676, and 

7775. These samples exemplify a striking discord in the power of genus-level taxonomic 

classification by these two approaches. 

 
Sample # Taxa Identified by Both 

PacBio & Shotgun 
# Taxa Identified by Only 
PacBio 

# Taxa Identified by 
Only Shotgun 

4821 8 5 767 

5461 5 1 195 

7531 14  17 131 

7651 13 22 59 
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7654 3 12 22 

7672 11 11 280 

7676 3 4 128 

7707 3 0 64 

7714 6 2 181 

7720 3 5 52 

7771 2 1 39 

7772 17 31 80 

7775 12 10 70 

7785 12 19 136 

7791 6 21 19 

7803 0 0 16 

 
Table 7. Species level classification counts for shotgun and PacBio 
 
 Because the shotgun analysis by Kraken2 is limited in its ability to distinguish between 

species with significant genomic similarity, we chose to reduce the granularity of our comparison 

and instead look at the genus-level classifications made by PacBio and the shotgun data (Table 

8) (53). Again, we see that most of the genera identified by PacBio are also identified by 

Kraken2. Similar to that observed when considering species-level classifications, we see that 

Kraken2 has identified many taxa that were not classified from the PacBio 16S data. In total, 28 

unique genera were identified only by the PacBio analysis in 11 of the 16 samples. For all but 

one of these samples, the relative abundance of these “PacBio only” genera consisted of <1% of 

the relative abundance. For sample 7772, however, these “PacBio only” genera consisted of 

4.05% of the relative abundance. 1.63% of these calls were for the genus Prevotella. The 
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remaining 9 genera that were only identified by the PacBio analysis were all found with a 

relative abundance <1%. 

 
Sample # Taxa Identified by Both 

PacBio & Shotgun 
# Taxa Identified by Only 
PacBio 

# Taxa Identified by 
Only Shotgun 

4821 10 0 369 

5461 2 0 104 

7531 12 8 76 

7651 12 10 29 

7654 5 1 12 

7672 10 2 144 

7676 3 1 68 

7707 1 0 42 

7714 4 4 100 

7720 2 1 36 

7771 1 0 25 

7772 16 10 45 

7775 12 2 35 

7785 13 8 36 

7791 8 5 10 

7803 0 0 13 

 
Table 8. Genus-level classifications for shotgun and PacBio 
 
 The Wilcoxon sum rank test was used to identify significantly different taxonomic 

classifications between the PacBio and shotgun analyses both at the species level as well as at the 

genus level. All of the significantly different taxonomic classifications were overrepresented in 
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the shotgun classifications relative to the PacBio classifications (Table 9). For the species 

comparison, Bacteria NA, M. terrae, and R. insidiosa were the significantly overrepresented 

species. R. insidiosa was only identified in one of the PacBio analyses, sample 7772. In contrast, 

it was identified in all of the shotgun data sets, albeit at a low relative abundance in all samples 

(<1.5%). The species classification M. terrae was not found in any of the PacBio classifications 

but was found in all 16 of the shotgun data sets (n=10,036). The majority of M. terrae 

classifications were found in sample 4821 (n=7,068, 23.71% of classifications in that sample). 

The relative abundance of M. terrae for sample 7672 was 7.06%; all others were below 5% 

(0.02%-4.87%). 

 For the genus-level comparison, Mesorhizobium was significantly overrepresented in the 

shotgun data (Table 9). While M. terrae was not identified at the species-level for the PacBio 

data, other members of this genus were detected in 9 of the 16 samples. The abundance of 

Mesorhizobium in this full-length 16S data, however, was often less than 1%, with the exception 

of sample 7651 which had an abundance of 2.13%. Mesorhizobium was identified in all shotgun 

data sets. In the shotgun data analyses, the relative abundance of Mesorhizobium ranged from 

0.10% (sample 7803) to 28.80% (sample 4821), with an average of 8.48% across all 16 samples 

(Figures 20 and 21). 

 
Species Comparison Genus Comparison 

Bacteria NA Bacteria NA 

Mesorhizobium terrae Mesorhizobium 

Ralstonia insidiosa  

 
Table 9. Classifications that were significantly overrepresented in the shotgun classifications 
compared to the PacBio classifications. 
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 In the shotgun classifications for UTI positive samples, we classified five urotypes: 

samples dominated by E. coli, Klebsiella, Pseudomonas, and Proteus, as well as a mixed 

urotype. In the PacBio classifications, four of the five urotypes were represented, and at different 

abundances. First, the Proteus urotype seen in the shotgun classifications (sample 7803) was not 

seen at all in the subset of PacBio classifications. Sample 7803 did not have any ASVs classified 

at all in PacBio, as after it was denoised with DADA2 there were only 6 sequences remaining. 

The other four urotypes were represented in both datasets: instead of 3 samples (7707, 7720, 

7771) being dominated by E. coli, 9 samples (7531, 7672, 7676, 7707, 7720, 7771, 7775, 7785, 

and 7791) were dominated by E. coli in the PacBio classifications. Sample 7676 had an 

abundance of Proteus classifications in the shotgun data, although it was classified as mixed 

because there were not enough to be a majority of the sample, and those Proteus classifications 

appear to be classified as Escherichia in the PacBio classifications (Figure 4.5). For the 

Klebsiella urotype, the shotgun and PacBio both classify sample 7651 to have a majority of 

Klebsiella. The Pseudomonas urotype was also maintained in both datasets in sample 7714. As 

for the mixed urotype, most of the mixed urotype shotgun classifications were classified as E. 

coli in PacBio. Samples 7531, 7654, 7672, 7676, and 7772 were all considered the mixed 

urotype in the shotgun classifications, and they all follow the E. coli urotype pattern in the 

PacBio data.  
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Figure 20. Stacked bar chart of genus and family level classifications for shotgun and PacBio 
data for UTI negative samples. 
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Figure 21. Stacked bar chart comparing genus and family level classifications between shotgun 
and PacBio data for UTI positive samples. 
 
Strain Level Classification of Mock Communities 

 Next STRONG was run on the shotgun metagenomic data sets to resolve strain level 

diversity. First the mock communities were compared against each other in STRONG as a proof 

of concept. STRONG successfully found all species added to the mock communities: E. faecalis, 

P. mirabilis, S. epidermidis, and E. coli. Specifically, with the E. coli bins, four strains were 

found (Figure 22).  It is important to note that five different strains of E. coli were included in the 

mock communities, representative of four different E. coli phylotypes. STRONG only reports 

four different strains (Figure 22). We thus posit that STRONG was unable to resolve the two 
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closely related phylogroup B2 strains E. coli UMB1162 and E. coli UMB1220. This proved that 

STRONG could detect strain diversity within a species.  

 

 

Figure 22. Strain-level detection of constituents of the two mock communities. (A) E. faecalis, 
(B) P. mirabilis, (C) S. epidermidis, and (D) E. coli. 
 
Strain Level Classifications of Experimental Samples 

Out of the 16 urobiome samples sequenced via shotgun metagenomics, five binned 

successfully. Four of those were UTI positive samples and one was UTI negative. As shown in 

the figure below, of the five samples that binned successfully, all of them were determined to 

only have one bin and one strain within them. Four of the five samples are classified as E. coli 

(including the UTI negative sample 5461), and the fifth was classified as Bifidobacterium breve 
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(Figure 23). Below are the STRONG results and the PacBio sequence variants associated with 

the stain classifications (Figure 23 and 24). As shown in Figure 24, there does not appear to be a 

correlation between the number of sequence variants found and the strain classification from 

STRONG. The number of E. coli or B. breve sequence variant classifications range from 22 to 

71 (Figure 24). Figure 24 also illustrates that even though only one strain was assigned from 

STRONG, only three of the samples had a sequence variant that was the majority of the 

classifications within the specific species (samples 5461, 7714, and 7720). 

 

 

Figure 23. Bins created by STRONG for all samples. 
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Figure 24. Stacked bar charts showing the relative abundances of E. coli and B. breve sequence 
variants from the samples that binned in STRONG. Number of sequence variants is included on 
the top of the bars per sample. 

 
The classification of a B. breve strain in sample 7714 invites investigation into sample 

7714 from all results of previous taxonomic sequencing (Figure 23, 24). The most abundant ASV 

in that sample from the PacBio data is P. aeruginosa (n=22,660), followed by B. breve 

(n=4,060). In the shotgun classifications, the most abundant classification was Pseudomonas NA 

(n=1,083) followed by P. aeruginosa (n=881) and then B. breve (n=515).  

One trait that samples 7672, 7676, and 7720 according to PacBio data is that they all have 

large relative abundances of E. coli (ranging from 67.76% to over 99%). According to the 

shotgun classifications though, E. coli was not the majority (>50%) of classifications made, 
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except for in sample 7720. In Chapter 2, it was determined that sample 5641 had more E. coli 

abundance than some of the UTI positive samples (n=19,407 and E. dysenteriae n=38,170), 

though being collected as a UTI negative sample. In the shotgun classifications though, only 119 

classifications of E. coli were made in the sample, making up only 3.9% compared to the over 

99% relative abundance Escherichia classification from PacBio. Similarly to sample 7714, 

although being less relatively abundant in the shotgun classifications than Ralstonia and 

Mesorhizobium species, an E. coli strain was classified. In sample 7672, PacBio classified 

74.53% of ASVs as E. coli (n=27,162), and shotgun sequencing found 3.54% of classifications 

as E. coli (n=228). Sample 7676 classified 67.76% of ASVs as E. coli with PacBio (n=11,485) 

and shotgun classified 8.45% of sequences as E. coli (n=143). Lastly, sample 7720 was 89.79% 

E. coli according to PacBio (n=60,152) and 56.24% of classifications in shotgun inferred 

taxonomy (n=685). 

Discussion 

Currently in the field of metagenomics, shotgun metagenomic sequencing is considered 

the gold standard for surveying microbial communities because of its depth of sequencing and 

ability to examine extrachromosomal components. In our survey of our mock communities, UTI 

positive, and UTI negative data, we found that the taxonomy predicted is likely overfitting the 

biological data. We also found that the software tool STRONG successfully found specific 

strains in urobiome data, although it did not find varying abundances of different strains within 

the experimental samples.  

Mock Community Taxonomic Assignment 

 The mock community taxonomy found from shotgun sequencing was the first indication 

of species and genera misclassifications. These misclassifications can be confirmed because we 
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know exactly what was added to the mock communities, and their relative abundances. While 

only 4 species were included in these mock communities, Kraken2 generated 53 different 

taxonomic classifications. These classifications ranged from as general as “Bacteria” to specific 

species-level. The most abundant classification was E. coli, which was correct, but the next most 

abundant classification was Enterobacteriaceae NA, meaning that only family-level taxonomy 

could be assigned to those sequences. Because E. coli and P. mirabilis belong to the family 

Enterobacteriaceae, these sequences could be from any of the five E. coli strains or the P. 

mirabilis strain in either community. The genera and species that were found in the 

classifications but not in the mock communities were mainly from the family Enterobacteriaceae 

(Citrobacter, Enterobacter, Klebsiella, Koskania, Lelliottia, Pluralibacter, Pseudoescherichia, 

Salmonella, and Shigella), suggesting that Kraken2 incorrectly identified these taxa rather than 

the E. coli or P. mirabilis in the mock community.  

The majority of S. epidermidis was misclassified as S. capitis. S. capitis is closely related 

to S. epidermidis and a member of the S. epidermidis group (111). An interesting result from the 

mock communities was the apparent lack of E. faecalis entirely. E. faecalis was classified 21 

times, and Enterococcus NA was classified 16 with no other Enterococcus species being found. 

The family and order classifications of Enterococcus, Enterococcaceae and Lactobacillales, were 

not classified at all. Enterococcus shares its phylum classification with Staphylococcus, 

Firmicutes, which was also not found. The lack of E. faecalis invites investigation into the tool 

used to assign taxonomy: Kraken2 does document that classifications of highly similar species 

are a shortcoming in the tool, as similarity in species sequences are sometimes too minute to 

separate (53). In those cases, taxonomy is assigned at the genus level. If this happened to E. 

faecalis sequences, we would expect more classifications as Enterococcus NA, but Enterococcus 
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NA (n=16) was classified less than Enterococcus faecalis (n=21). A possible explanation for this 

would be E. faecalis being classified simply as Bacteria NA. This lack of classification for E. 

faecalis does not seem to extend to the phylum level, though, because Staphylococcus was found 

in high abundance. This is a finding that impacts the inferred shotgun sequencing taxonomy 

going forward in our analysis: Enterococcus was simply not found by the classifier even though 

we know it was in the sample.  

Generally from the mock communities, we see that the bulk of classifications were either 

not able to be classified to the genus or species level or were misclassified at the genus or species 

level completely. Comparing the taxonomy assignment from shotgun sequencing and PacBio 

sequencing, we see that the PacBio mock community classifications were much closer to the 

truth. 

Experimental Samples Taxonomy Assignment  

In the UTI positive samples, we found high abundances of Ralstonia, Mesorhizobium, 

and Escherichia, but we also found a high abundance of sequences that were not classified past 

the family classification of Enterobacteriaceae. There were also samples where previously 

identified uropathogens predominated, like Klebsiella (also an Enterobacteriaceae), Proteus (also 

an Enterobacteriaceae) and Pseudomonas (25,112). Other uropathogens like Enterococcus and 

Aerococcus were not found in high abundance. In the UTI negative samples, Kraken2 found an 

abundance of M. terrae, followed by Ralstonia NA, Delftia NA, and Rhizobium NA.  

Shotgun sequencing reported many more taxonomic classifications than the PacBio data. 

On average, shotgun sequencing assigned 139.94 more species-level classifications than PacBio. 

The most different sample between PacBio and shotgun classifications was sample 4821 with 

767 more classifications from shotgun than PacBio, which is interesting because that sample 
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represented the mixed urotype from an asymptomatic urobiome. Although we cannot directly 

compare abundances between PacBio and shotgun as shotgun classifications do not accurately 

capture relative abundance, we can infer that the differences between number of taxa assigned 

show shotgun sequencing overfitting the sequences. The vast difference between the shotgun and 

PacBio taxonomy is hard to capture, as our statistics can only compare the taxonomic 

classifications found in abundance in both samples. Another way to examine differences between 

the sequencing technologies is our classification of urotypes. PacBio determined 2 more urotypes 

than shotgun (Enterococcus and Aerococcus), and one less (Proteus). Note, the samples that 

were the Aerococcus urotype in PacBio were not sequenced with shotgun sequencing, so a 

comparison cannot be made. This means that between the sequencing types, two samples 

changed urotypes: sample 7654 changed from Enterococcus to a mixed urotype, and sample 

7803 did not have any classified ASVs in PacBio and was classified with shotgun as Proteus. 

The sample 7654 urotype change makes sense because the shotgun classifications barely found 

any Enterococcus in the experimental samples (n=117 across all samples), as well as not being 

found in high abundance in the mock communities, where we know it was added.  

As for similarities between the datasets, we can also examine urotypes. We determined 

five urotypes in the UTI positive data from shotgun sequencing: Escherichia, Klebsiella, 

Pseudomonas, Proteus, and mixed (which always contained Ralstonia, Mesorhizobium, and 

Delftia). Shared between PacBio and shotgun sequencing are the Escherichia, Klebsiella, 

Pseudomonas, and mixed urotype. The similarities in urotype show that although the number of 

classification varies between the types of sequencing technology, the majority of classifications 

in 14 of the samples were the same. 



 83 
 The genera identified in our UTI positive samples are similar to those found in a study by 

Moustafa et. al (92) in which shotgun metagenomic sequencing was conducted for 49 UTI 

positive samples. In that study, taxa were assigned using the Human Longevity Inc. database 

using an Expectation Maximization algorithm, and they reported an average of 41 bacterial 

strains per sample, and samples were split into three clinical groups (92). They found 

Escherichia, Klebsiella, Pseudomonas, Enterobacter, Citrobacter, Acidovorax, Ralstonia, 

Aerococcus, Proteus, Gardnerella, and Bifidobacterium, among many others. The classifications 

of Ralstonia and Bifidobacterium were supportive of our findings as they have not been 

extensively examined in regard to the urobiome, so it is encouraging to see them documented in 

another study examining UTI positive urobiomes. They did not classify it as abundantly as we 

did, although this comparison is difficult to make because Ralstonia is included in all three of 

their clinical clusters and genera were not reported as a raw count or relative abundance.  

In yet another shotgun metagenomic sequencing study of the urobiome, 43 culture 

positive and 43 culture negative samples were sequenced and classified using Kraken2 resulting 

in 200 different taxonomic classifications. In the culture positive samples, the species E. coli, P. 

aeruginosa, E. faecalis, P. mirabilis, K. pneumoniae, and A. urinae dominated over 90% of all 

samples (105). All of these classifications were found in high abundance in our shotgun data, 

except for Aerococcus urinae (n=1 in sample 7772). In the culture negative samples, G. 

vaginalis, E. coli, K. pneumoniae, Acinetobacter lwoffii, S. agalactiae, S. epidermidis, 

Bifidobacterium dentium, P. aeruginosa, L. gasseri, L. crispatus, L. jensenii, and E. faecalis 

were found. In our UTI negative samples, we found 8 of the 12; we did not find A. lwoffii, S. 

agalactiae, L. gasseri, or B. dentium, but we did find species within those genera. This paper 
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shows that even though the same tool was used to assign taxonomy, taxonomic classifications 

vary at the species level, particularly in UTI negative samples.  

Strain Detection 

A key objective of this study was to ascertain if UTIs were the result of monoclonal 

colonization or multiclonal colonization. The analysis of the mock community data using 

STRONG confirmed that E. coli phylogroups could be distinguished from shotgun metagenomic 

sequencing data. Examination of the UTI positive and UTI negative samples, however, revealed 

that there are relatively few species sequenced at a depth such that single copy number genes 

could be identified with sufficient representation such that STRONG could confidently predict a 

species’ presence. Strain diversity within the samples that had enough definition was not found. 

Four of the five samples binned into E. coli strains, which is to be expected given previous 

knowledge about UTIs and the previous high abundances in the PacBio data.  

Conclusion 

 In this chapter, we examined the classifications created from shotgun metagenomic 

sequencing of UTI positive and UTI negative samples using Kraken2 and compared taxonomy to 

the previous PacBio classifications of previous chapters. We also examined strain-level diversity 

of the samples using STRONG. According to our mock communities, the inferred shotgun 

taxonomy was not as accurate to the biological truth as the PacBio taxonomy. A large number of 

sequences were misclassified within the correct family, and many sequences could not be 

resolved to the genus or species level. We also found that in the experimental data, the shotgun 

classifications greatly outnumbered the PacBio classifications, with the shotgun classifications 

having extremely low abundances (n=1). This, in addition to the knowledge from the mock 

communities, shows that shotgun sequencing is not as accurate in finding taxonomy as full-
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length 16S sequencing in the urinary microbiome. And although STRONG did find 4 of 5 strains 

in the mock community (which shows that it cannot distinguish between phylotypes), it did not 

successfully find strain-level diversity in the experimental samples. We can assume that different 

strains of species are present in the experimental samples because of the PacBio sequence variant 

results, and the lack of strain detection within samples shows that the tool is insufficient for 

strain-level classification in regard to urobiome samples. Furthermore, strains should have 

theoretically been detected in all samples as we know that each sample had a biological 

community, and that was not the case. Shotgun metagenomic sequencing is a powerful tool for 

surveying the functional capacity and extrachromosomal features of a microbiome, but we found 

that the taxonomy assigned from current sequencing and tools was not as effective as full-length 

16S sequencing.  
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CHAPTER FIVE 

CONCLUSIONS AND FUTURE DIRECTIONS 

Comparison of Taxonomy Found between Methods 

 The first aim of this thesis was to compare the taxonomy found between long-read 16S 

sequencing to 16S single-variable region sequencing, and long-read 16S sequencing and shotgun 

metagenomic sequencing. Comparison of 16S single-region sequencing to shotgun sequencing 

directly was not done because 16S single-region sequencing does not reach the specificity that 

PacBio or shotgun sequencing has been shown to reach. We found that the best technology for 

taxonomy assignment for our urinary microbiome data was PacBio sequencing. 

 In the mock community classifications, PacBio was the most accurate of all three 

methods. The analysis of the mock community PacBio sequences identified 17 species that were 

not in the community, most of which fell under the umbrella of E. coli. At the genus level, 2 

genera were misclassifications, which only made up 0.2% of abundance. In the mock community 

analysis with single variable region data, the V1-V3 classifications were more accurate to the 

biological truth and the PacBio classifications. The V4 classifications found all of the correct 

taxonomy as well, but there were more additional classifications not added to the communities 

and more ASVs were classified as NA at the genus level. Analysis of the shotgun metagenomic 

sequencing of the two mock communities identified all four of the mock community species in 

addition to 49 other classifications. These additional taxonomic predictions include higher-order 

taxonomic predictions as when species-level taxonomy cannot be assigned by Kraken, the next 

order of certain taxonomic classification is. Interestingly, Kraken did not identify the E. faecalis 
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strain at all. This is concerning as E. faecalis is a known uropathogen, frequently associated with 

recurrent UTIs, and also is frequently missed during culture-based diagnoses (113).  

In the UTI positive data, PacBio sequencing found abundances of previously documented 

uropathogens, including E. coli (the most abundant ASV), A. sanguinicola, K. pneumoniae, P.  

aeruginosa, and E. faecalis. These uropathogens defined the 6 urotypes assigned within the UTI 

positive data: Escherichia, Aerococcus, Klebsiella, Pseudomonas, and Enterococcus, as well as a 

more general “mixed” urotype where no genus was the majority of classifications. Both variable 

regions found the same six urotypes as PacBio sequencing in the UTI positive samples. Within 

the mixed urotype, though, PacBio found more Delftia and Rhizobium, and both variable regions 

both found more Ralstonia. Shotgun metagenomic sequencing of a subset of the UTI positive 

urobiomes classified many more taxa than PacBio. The largest difference was seen in sample 

4821, with 767 classifications made in shotgun but not in PacBio. Shotgun sequencing found 5 

urotypes: E. coli, Klebsiella, Pseudomonas, Proteus, and mixed, 4 of which were shared with 

PacBio. The PacBio-classified Aerococcus urotype was not sequenced via shotgun sequencing. 

The PacBio-classified Enterococcus urotype was classified as mixed urotype in the shotgun data. 

This concurs with the observation made in the analysis of the mock communities: Kraken2 fails 

to identify urinary strains of Enterococcus.  

PacBio 16S sequencing of the UTI negative data identified two urotypes: Escherichia and 

mixed. The Escherichia urotype was only observed in sample 5461, which had enough E. coli 

abundance to be considered a UTI, but the female participant was asymptomatic. The urotype for 

the UTI negative samples, similar to those from the UTI positive samples, showed a similar 

composition of Ralstonia, Delftia, and Rhizobium across UTI positive and UTI negative samples. 
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The variable region data and shotgun data all found the two urotypes, and sample 5461 was 

always the only sample that could be classified as Escherichia.  

Comparison of Strain Level Diversity  

The second aim of this thesis was to examine the strains found in the urinary microbiome 

with long-read sequencing and shotgun metagenomic sequencing. There was more preliminary 

work on strain diversity using shotgun sequencing, but with the depth and specificity that PacBio 

sequencing now possesses, determining strains via PacBio is worth investigating. Before 

addressing the similarities and differences in strain level diversity found, it is important to note 

that the single variable region data will not be included in this discussion. Short-read 16S rRNA 

gene sequence classifications cannot resolve species, let alone strains.  

The discussion of strain-level variation between PacBio and shotgun sequencing is not as 

binary as taxonomic assignment. The mock community classifications from both types of 

sequencing show quite different results. In the PacBio classifications, 45 E. coli sequence 

variants were found, representing 5 distinct strains of E. coli. Considering that E. coli has seven 

different copies of the 16S gene this suggests that perhaps the “purified” E. coli isolates were not 

as pure as thought, including one or more very closely related strains and thus additional 

variants. STRONG identified four strains of E. coli. As the mock communities contained five 

different strains, representative of four different phylogroups, this result suggests that STRONG 

cannot distinguish between phylogroups. Thus, strain-level variation could be detected, but not 

phylotype-variation within the strains.  

In the PacBio UTI positive results, there were 393 distinct E. coli sequence variants. 

While some samples only had a few E. coli sequence variants, some had many more than the 

mock communities. For instance, sample 7720 included 71 different E. coli sequence variants. 
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While STRONG did identify a strain of E. coli in this sample, it did not identify more than one 

strain. Based on observations from the analysis of the mock communities, we hypothesize that 

this sample contains more than one strain, although these strains are likely from the same 

phylotype. Per PacBio sequencing, sample 7720 is an E. coli urotype, dominated by E. coli. 

Thus, the inability to distinguish between strains is not likely due to underrepresentation of the 

different strains in the sequencing data. Our investigation illuminates the limitations of STRONG 

to distinguish similar genomes.  

Future Directions and Recommendations 

 When I started this project, based on previous literature I assumed that shotgun 

metagenomic sequencing would be more effective at taxonomic assignment and strain level 

detection. This was not the case. In the mock communities, PacBio-based taxonomic 

classifications were more accurate than the shotgun. In the urobiome data, Enterococcus, a 

proven uropathogen, was not found in the shotgun classifications, when I knew it was present in 

the samples and over 50% of ASVs in sample 7654. Based on these results, I can conclude that 

full-length 16S sequencing is better at classifying taxonomy than shotgun sequencing. 

Furthermore, more work needs to be done regarding the lack of Enterococcus being found in the 

shotgun data if shotgun metagenomics is being used to find uropathogens.  

 In our third chapter, I compared PacBio sequencing to single variable region 16S 

sequencing. This is not because I thought that single variable regions could provide as much 

insight as PacBio (i.e., look for strains), but I wanted to see the similarities and differences in the 

taxonomies found. Single variable region analysis identified many taxa that were not present in 

the mock communities, for which we know the constituents, as well as in the urobiome samples, 

including taxa that have not been isolated from the urobiome. These false positive results could 
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be misleading for researchers and generate noise when trying to determine the microbial “signal” 

of lower urinary tract symptoms or urinary tract health. Now that PacBio runs are economical 

and error rates have been drastically reduced and there are software tools for analyzing PacBio 

long-read 16S rRNA sequence data, future taxonomic surveys of the urobiome as well as other 

ecological niches should rely on full-length sequencing rather than short-read. 

I next attempted to find strain-level diversity in urobiome communities. The results from 

the mock communities indicated that shotgun sequencing could differentiate strains, because four 

of the five E. coli phylotypes were found as well as all the other species in the community. 

However, it did not continue its success with the experimental samples. Five of the 16 shotgun 

samples were binned by STRONG, meaning that it identified a species present. It did not identify 

more than one strain. Given the number of sequence variants found from the PacBio sequencing 

per species, we hypothesize that there are more than one strain present in many of our samples. I 

found that sequence variants do not directly correlate to strains in the PacBio classifications, as 

we included 5 E. coli phylotypes in the mock communities and we found 45 E. coli sequence 

variants. Future research into how to take these sequence variants and ascertain how many 

strains are present is needed. Given that this is only possible with full-length 16S rRNA 

sequencing, this is a new challenge for bioinformatics.  

 Lastly, it is important to address the genera and species found in the urobiome samples. 

Perhaps the most interesting taxonomic classification across all three chapters was the consistent 

presence of Ralstonia in the mixed urotype samples. Ralstonia has been observed in urobiomes 

with 16S and shotgun metagenomic sequencing, but it has yet to be isolated via culture methods 

from urine samples. Future studies should investigate the role of Ralstonia in the urobiome, as 

maybe it has not been previously widely discovered because it cannot be cultured using EQUC 
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procedure. We also found an abundance of Delftia in UTI negative samples in the PacBio 

classifications specifically. Common uropathogens were identified: E. coli, P. aeruginosa, P. 

mirabilis, S. epidermidis, A. sanguinicola, and E. faecalis (found primarily with PacBio).  

In conclusion, future studies into the taxonomy of complex communities should avoid 

short-read sequencing all together. PacBio far outperforms single variable region sequencing, 

and the mock communities were instrumental in highlighting the limitations of individual 

variable regions. While I originally thought that shotgun metagenomic sequencing would 

generate the best representation of the diversity within the sample, there were a lot of false 

positive calls. Furthermore, I thought that shotgun metagenomics would allow me to detect 

strains, but this was not possible with STRONG on the urobiomes despite our success with the 

mock communities. Improved bioinformatics tools are needed to distinguish strains, particularly 

when the strains have significant genomic similarity. An outstanding question surrounds the 

question of the presence of R. pickettii. This species was seen in all the samples but in low 

abundance in the negative control. This leads us to ask if it is a contaminant or a true member of 

the urobiome. 
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