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ABSTRACT 

 Most genetic variants associated with complex human traits exist in non-coding regions, 

and thus the mechanism by which they affect a trait can be unclear. Genetic regulation of 

transcription and translation are key mechanisms through which genetic variants impact traits. 

Quantitative trait locus (QTL) mapping studies leverage data produced by advanced sequencing 

and assay technology to identify variants associated with the abundance of a molecular trait like 

RNA expression (eQTL) or protein levels (pQTL). While proximal genetic variants (cis-acting), 

like those in promoter or enhancer regions of genes, tend to have the largest effect sizes on RNA 

transcript and protein levels, distal genetic variation (trans-acting) still contributes considerably 

to regulating transcription and translation. However, trans-QTL can be difficult to discover due 

to the high multiple testing burden, their comparatively low effect sizes, and their tendency to 

have tissue- or cell type-specific effects. Methods that prioritize testing cis-eQTL for trans-

acting associations have proven effective because they reduce the multiple testing burden and 

many trans-eQTL colocalize with cis-eQTL. For example, a transcriptome-wide association 

study (TWAS) that used observed gene expression as trait found more trans-acting genes than a 

comparable eQTL study. We hypothesized that performing a TWAS using protein levels as trait 

would be effective at identifying trans-pQTL because it prioritized cis-eQTL for testing trans-

acting genes. While gene expression and protein levels have previously been shown to have a 

low correlation, we hypothesized that GReX would have a higher correlation with observed 

protein levels because it excludes variation in expression due to environmental factors. We used 
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genotype and plasma protein measurements from individuals participating in the INTERVAL 

study for our TWAS and replicated these results with genotype and plasma protein 

measurements from individuals in the TOPMed MESA cohort. We used transcriptome prediction 

models from 49 tissues trained with GTEx Project genotype and RNA-Seq data. Furthermore, we 

used RNA-Seq data from the TOPMed MESA cohort to compare the correlation of observed 

expression levels with protein levels to the correlation of predicted expression levels with protein 

levels. We discovered many replicable cis- and trans-acting gene-protein relationships and found 

that predicted expression had a higher correlation and true positive rate than observed expression 

for significant association with protein levels. These results indicate that predicted gene 

expression may better uncover the genetic mechanisms underlying complex traits than observed 

expression.  
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INTRODUCTION 

Genetic Regulation of Gene Expression 

 Since the publication of the first human genome in 2001, the time and cost efficiency of 

genome sequencing has improved greatly.1,2 The proliferation of genomic data has allowed for 

extensive study of human genetic variation. Comparison of thousands of human genomes has 

revealed that, while greater than 99.9% of the human genome is shared between individuals, 

there are also millions of DNA variants that play a substantial role in the phenotypic differences 

observed between people.3,4 The basic unit of variation is the single nucleotide polymorphism 

(SNP) – a location in the genome where individuals have a different nucleotide base pair (i.e. a 

different allele) from others. Genome-wide association studies (GWAS) leverage genotype data 

across large populations to identify specific variants that are associated with complex human 

traits by testing the genotypes of millions of variants for association with a measurable trait of 

interest like BMI or disease presentation.5 As of 2023, more than 500,000 significant GWAS 

associations for thousands of traits have been reported in the GWAS catalog, an online database 

for storing and reporting GWAS results.6 While some GWAS SNPs are found within exons, 

most GWAS SNPs are located in noncoding regions and thus likely play a role in affecting 

complex traits through gene regulation.7–9 

 Transcriptional regulation of gene expression is an important mechanism through which 

genetic variation influences trait presentation. On top of environmental influence in the form of 

epigenetic modification, transcription is carefully controlled by a variety of both nearby genetic 

variation (cis-SNPs), in the form of promoter, insulator, and enhancer regions responsible for 
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recruiting or blocking proteins necessary for gene expression, and distant genetic variation 

(trans-SNPs), which largely involves the regulation of expression of transcription factor genes. 

Technological advances like genotyping microarrays, which contain thousands to millions of 

probes that target and classify known genetic variants in DNA, and RNA-Seq, which uses 

techniques like reverse transcription, short read next-generation sequencing, and DNA mapping 

to identify and quantify RNA transcripts in a sample, have enabled the computational study of 

gene regulation.10,11  

  Expression quantitative trait locus (eQTL) mapping leverages genotype and expression 

level data produced by expression microarrays, which measure the expression of specific, target 

genes, or next-generation sequencing methods to identify genetic variants that influence gene 

expression. Like performing a GWAS with expression levels as a trait, eQTL studies test 

genotypes for association with the expression levels of thousands of genes. Due to the difficulties 

in collecting samples for RNA-Seq from most human tissues, the first eQTL studies were 

performed in blood.12–15 However, gene expression is variable across different cell and tissue 

types, so eQTL studies conducted in blood were limited in their ability to detect eQTL effects 

not present in blood. The Gentoype-Tissue Expression (GTEx) Project was established to 

provide a resource for genetic variation’s impact on expression across a wide variety of human 

tissues.16 The latest, version 8 release of the GTEx Project performed eQTL mapping in 49 

different human tissues.16 GTEx and other early eQTL studies found that the strength of effect of 

eQTL decayed with distance from the transcription start site (TSS) of a gene.16,17 Furthermore, 

cross tissue analysis revealed that eQTL closer to the TSS of a gene (cis-acting) were more 

shared across tissues while distant eQTL (trans-acting) had more cell-specific effects.16–19 

Despite trans-eQTL having low effect sizes, they clearly play an important role in cell type 
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differentiation, and they still contribute a large amount to the heritability of gene expression, 

highlighting how most eQTL studies have been underpowered at identifying trans-acting 

effects.20   

 The smaller effect sizes of trans-eQTL, combined with the high multiple testing burden 

for mapping trans-eQTL have limited their identification and confirmation. However, many cis-

eQTL also participate in trans-acting effects, thus some studies have been successful at 

prioritizing known cis-eQTL for discovering trans-acting effects.21,22 One method that has 

proven successful for identifying trans-acting effects is trans-PrediXcan.23,24 PrediXcan is a 

framework for performing transcriptome-wide association Studies (TWAS), in which the 

regularized effect sizes of cis-eQTL are used to impute the genetically-regulated expression 

(GReX) of genes from genotype data and test each gene for association with a measured trait.23,25 

Trans-PrediXcan aimed at identifying trans-acting genes by testing the genetically regulated 

expression of a gene for association with the observed expression of all distant genes.24 This 

method had more power for identifying trans-acting effects than trans-eQTL studies because it 

combined the effects of multiple cis-eQTL to predict expression for trans-acting genes.24 

Incorporating Proteomic Analysis 

 There are limitations to taking a transcriptomic approach to studying complex human 

traits. Translation takes place after transcription, as do additional posttranslational modification 

and processing steps, which could affect the mechanism by which genetic variation influences 

complex traits.26 Incorporating multiple molecular quantitative trait loci is essential for picking 

apart the pathways through which noncoding GWAS SNPs affect trait presentation.8,27 Advanced 

proteomic assay technology has allowed for the incorporation of proteomic data into complex 

trait genetics approaches.21,28 Protein quantification platforms like SomaScan use aptamers that 
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specifically bind to one (or sometimes a few) proteins to capture and quantify target proteins 

from a biological sample.29,30 Large-scale quantification of protein levels like this has powered 

protein quantitative trait locus (pQTL) studies, which identify genetic variants associated with 

protein levels.26,31,32 As with early eQTL studies, most pQTL mapping has been performed in 

blood tissues due to the ease of sampling. Similar to TWAS, proteome-wide association studies 

(PWAS) predict genetically regulated protein levels using effect sizes from cis-pQTL and test 

genetically regulated protein expression for association with a measured trait in order to better 

understand the genetic mechanisms underlying the complex trait.33,34  

TWAS for Proteins Approach 

 Like eQTL studies, pQTL studies have been underpowered for discovering trans-

pQTL.31,32 Furthermore, many studies have found large overlap between eQTL and pQTL, 

especially in blood and liver cells.26,31,32 In contrast, many studies have reported that observed 

RNA expression levels do not correlate well with the observed protein levels of the same 

underlying gene.26,35–37 Here, we leveraged the PrediXcan framework to examine how gene 

regulation across many human tissues influences plasma protein level in cis and trans.23 By 

prioritizing cis-eQTL for testing trans-acting genes, we hypothesized that this method would 

have more power for detecting trans-pQTL. Furthermore, we hypothesized that the genetically 

regulated component of expression (GReX) is more correlated with protein levels than observed 

expression of the encoding gene because GReX excludes variability of expression caused by 

nongenetic factors. Our discovery cohort included individuals from the INTERVAL study.31 We 

used genotype data from these individuals and gene expression prediction models from 49 GTEx 

tissues to impute GReX, which we tested for association with their measured plasma protein 

levels.16 We replicated these results using genotype and plasma protein data taken from 



5 

 

individuals in the TOPMed MESA multi-omics pilot study.38 Finally, we utilized RNA-Seq for 

individuals in the TOPMed MESA cohort to test observed expression for association with 

plasma protein levels and compared the correlation of observed and predicted expression with 

plasma protein levels.39 We found both cis- and trans-acting relationships that replicate between 

transcripts and plasma protein levels, with the highest true positive rates for transcripts that 

encode the measured protein. We also show predicted expression has a higher true positive rate 

than observed expression for significant association with protein levels.  
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METHODS 

Genome and Proteome Data 

 Our discovery dataset was from the INTERVAL study, which was conducted on around 

50,000 blood donors with European ancestry across England.40 Here, we used data from the 

3,301 individuals who had both a genotyping microarray performed (EGA: EGAD00010001544) 

and a targeted proteome assay run to measure their plasma proteome levels (EGA: 

EGAD00001004080).31 Data generation and quality control have previously been described by 

the INTERVAL study.31,40 An Affymetrix Axiom UK Biobank array was used for genotyping 

and imputation was performed on the Sanger imputation server using a combined 1000 Genomes 

Phase3-UK10K reference panel.5,7 Genotypes were then filtered for minor allele frequency 

(MAF) > 0.01 and R2 > 0.8.39 The SOMAscan assay used to collect the proteomic data targeted 

3,622 plasma proteins.30 The protein levels were log-transformed and adjusted for age, sex, 

duration between blood draw and processing, and the first three genetic principal components.31  

 Our replication dataset was from the Trans Omics for Precision Medicine (TOPMed) 

MESA (Multiethnic Study of Atherosclerosis) multi-omics pilot study. The TOPMed program is 

a research consortium that aims at improving personalized disease treatments through the study 

of genetics and other omics traits’ effect on disease traits and drug responses.38 The MESA 

study, under TOPMed, includes individuals from multiple genetic ancestries. The four study-

defined groups included in MESA are African American (AFA), Chinese (CHN), European 

(EUR), and Hispanic/Latino (HIS). Individuals in the study were genotyped as part of the MESA 

SHARe study (dbGaP: phs000420.v6.p3).41 Genotype quality control has been previously 
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described.39,42 Genotypes were imputed on the Michigan imputation server using a reference 

panel from 1000 Genomes.42 They were then filtered for MAF > 0.01 and R2 > 0.8.39 

Additionally, individuals taking part in the MESA multi-omics pilot study had their plasma 

proteome measured with a SOMAscan HTS Assay that targeted 1,300 plasma proteins, 1,039 of 

which overlapped with the proteins tested in the INTERVAL study.29 The protein levels were 

log-transformed and adjusted for age, sex, time-point, and the first ten genetic principal 

components.39 In total, our replication cohort included 971 individuals with genotypes and 

plasma protein level measurements (AFA n = 183, CHN n = 71, EUR n = 416, HIS n = 301). 

Transcriptome Data 

 For our analysis comparing the genetically regulated transcriptome to the observed 

transcriptome, we used transcriptomic data from individuals in the MESA multi-omics pilot 

study. RNA-Seq was performed for individuals from all four different populations (AFA, CHN, 

EUR, and HIS) in three different blood cell types: peripheral blood mononuclear cells (PBMC), 

CD16+ monocytes (Mono), and CD4+ T-cells.41 In total, 1,287 PBMC samples, 395 Mono 

samples, and 397 T-Cell samples were sequenced. Quality control for the RNA-Seq data has 

been previously described.43 Genes with average transcripts per million (TPM) values < 0.1 were 

filtered out, leaving 18,193 genes with expression measurements in PBMC, Monocytes, and T-

cells. Finally, expression levels were log-transformed, adjusted for age, sex, time point, the first 

ten genetic principal components, and the first ten expression components.43 . 

TWAS for Protein Levels 

 We performed TWAS with the software tool, PrediXcan, which leverages eQTL weights 

to predict genetically-regulated expression (GReX) and performs a linear association analysis to 

correlate GReX with a measured trait.23 We used gene expression prediction models from 
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PredictDB, which were built off the Genotype-Tissue Expression (GTEx) Project’s version 8 

release, to impute GReX in 49 different human tissues.16,23,44,45 The models were built using 

MASHR (Multi-Variate Adaptive shrinkage in R)46 and only include cis-eQTL with MAF > 

0.01.47 The number of genes included in each tissue’s gene expression prediction model can be 

found in Table 1. The GTEx models collapse alternative transcripts into gene level prediction 

models, meaning what we refer to as the predicted transcript levels for any one gene may include 

multiple different mRNA products. In each tissue, we tested genetically predicted transcript 

levels for association with the observed protein levels of all 3,622 plasma proteins measured in 

the INTERVAL study. We assessed significance via the Benjamini-Hochberg false discovery 

rate (FDR) method. Within each of the 49 tissues that we predicted expression in, we used the 

Qvalue R package to calculate qvalues for all predicted transcript-protein association tests 

conducted.48 Transcript-protein pairs with a qvalue (FDR) < 0.05 were considered significant. 

 For every transcript-protein pair that we found significant (FDR < 0.05) in INTERVAL, 

we tested that association using genotypes and protein levels from TOPMed MESA if the protein 

was measured in both studies (Figure 1a).  
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Table 1. Number of genes in the transcriptome prediction model per tissue. 

Tissue # of Genes Tissue # of Genes 

Adipose Subcutaneous 14,732 Esophagus Mucosa 14,589 

Adipose Visceral Omentum 14640 Esophagus Mucularis 14,603 

Adrenal Gland 13,622 Heart Atrial Appendage 14,035 

Artery Aorta 14,396 Heart Left Ventricle 13,200 

Artery Coronary 13,878 Kidney Cortex 11,164 

Artery Tibial 14,493 Liver 12,714 

Brain Amygdala 12,814 Lung 15,058 

Brain Anterior Cingulate 

Cortex BA24 

13,528 Minor Salivary Gland 13,884 

Brain Caudate Basal Ganglia 14,118 Muscle Skeletal 13,381 

Brain Cerebellar Hemisphere 13,771 Nerve Tibial 15,373 

Brain Cerebellum 13,992 Ovary 13,738 

Brain Cortex 14,284 Pancreas 13,695 

Brain Frontal Cortex BA9 14,091 Pituitary 14,647 

Brain Hippocampus 13,526 Prostate 14,450 

Brain Hypothalamus 13,741 Skin Not Sun Exposed 

Subrapubic 

14,932 

Brain Nucleus Accumbens 

Basal Ganglia 

14,062 Skin Sun Exposed Lower 

Leg 

15,204 

Brain Putamen Basal Ganglia 13,694 Small Intestine Terminal 

Ileum 

14,065 

Brain Spinal Cord Cervical C-1 13,096 Spleen 14,073 

Brain Substantia Nigra 12,637 Stomach 14,102 

Breast Mammary Tissue 14,654 Testis 17,867 

Cells Cultered Fibroblasts 13,976 Thyroid 15,308 

Cells EBV-Transformed 

Lymphocytes 

12,398 Uterus 13,199 

Colon Sigmoid 14,363 Vagina 12,969 

Colon Transverse 14,582 Whole Blood 12,623 

Esophagus Gastroesophageal 

Junction 

14,285   



10 

 

Calculating the Proportion of True Positives 

 The π0 statistic is the estimated proportion of false positives from a distribution of p-

values assuming a uniform distribution of null p-values.48 The qvalue function from the Qvalue 

R package calculates the π0 statistic from a vector of pvalues.48 Likewise, the π1 statistic 

estimates the proportion of true positives given a distribution of p-values, and is derived from π0 

as defined below.48 

𝜋1 = 1 − 𝜋0 

 We divided the associations we tested in INTERVAL into 4 categories based on the 

genomic proximity of the predicted transcript and the target protein: cis-acting, cis-same, cis-

different, and trans-acting. We defined cis-acting relationships as those where the transcription 

start site of the gene that encodes the predicted transcript was within 1 Mb of the transcription 

start site of the gene that encodes the target protein. Likewise, trans-acting transcript-protein 

pairs were greater than 1 Mb away from each other or on different chromosomes entirely. We 

further divided cis-acting relationships into cis-same, where the gene that encodes the predicted 

transcript was the same as the gene that encodes the target protein, and cis-different, where the 

predicted transcript and target protein are encoded by different but nearby genes (Figure 1b).  

 For each of these groups in every tissue, we pulled the pvalues for every tested 

association and calculated the π0 statistic using the qvalue R package. While we used the default 

qvalue function parameters in INTERVAL, we adjusted the qvalue parameters when replicating 

in TOPMed MESA. Because we only tested pairs that we already found significant in 

INTERVAL, most of the cis-same associations tested in TOPMed MESA returned significant 

pvalues, thus the pvalue distribution in most tissues did not extend all the way to 1. By default, 

the qvalue function calculates the average frequency of pvalues from 0.05 to 1.0 to determine the 
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expected proportion of null pvalues, so there must be pvalues throughout this entire range for the 

function to work. These bounds are controlled by the lambda parameter, which we truncated 

from 0.05 to 1.0 to 0.05 to 0.75 when calculating π0 in TOPMed MESA. With the estimated π0 

statistic, we calculated the π1 value for every cis/trans group in every tissue. 

Gene Set Enrichment Analysis of Protein Targets 

 We used the web tool, Functional Mapping and Annotation of Genome-Wide Association 

Studies (FUMA GWAS) to perform a gene set enrichment analysis of all of the protein targets 

that replicated in TOPMed MESA.49 We tested the targets involved in cis-acting and trans-acting 

associations separately. For both groups, we tested the protein targets for enrichment (FDR < 

0.05) of GWAS catalog associations and motifs that are known targets of transcription factors 

(TFs). 

Identifying Master Regulatory Loci 

 We defined a master regulatory gene as one that is significantly associated with the 

abundance of more than 50 unique protein targets in INTERVAL. We counted the number of 

significant target proteins for each gene (FDR < 0.05) across all 49 tissues in INTERVAL to 

identify master regulatory genes. We further defined a master regulatory locus as a set of master 

regulatory genes whose transcription start sites are within 200kb of the transcription start site of 

the nearest gene in the locus. For each master regulatory locus, we quantified the number of 

unique protein targets of the genes within that locus, along with the number of these targets that 

were tested in TOPMed MESA, and the number of these targets replicated associations with any 

of the genes in that locus in TOPMed MESA.   
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Gene Set Enrichment Analysis of Master Regulators 

 We used FUMA GWAS to perform a gene set enrichment analysis of the master 

regulatory genes as well as their protein targets.49 We tested the protein targets of each master 

regulatory locus that we discovered in INTERVAL for enrichment (FDR < 0.05) of GWAS 

catalog associations and TF target motifs using all proteins measured in INTERVAL as 

background. For the master regulatory loci with more than one gene, we tested the master 

regulatory genes at that locus for enrichment of GWAS catalog associations and TF target motifs 

using the union of all genes in each tissue prediction model as background (22,133 genes total). 

Cis-same Observed Expression Association Analysis 

  We performed a linear regression analysis to test observed expression levels for 

association with observed protein levels. RNA-Seq data are not available in INTERVAL, but 

they are in TOPMed MESA. In each of these tissues, we leveraged PrediXcan’s linear regression 

association script to test the observed gene expression of each gene measured in TOPMed MESA 

for association with the observed abundance of the protein product of that gene if it was also 

measured in TOPMed MESA. Furthermore, we performed a TWAS with PrediXcan to test the 

predicted gene expression of each gene included in each of the 49 prediction models from GTEx 

for association with the observed abundance of the protein product of that gene if it was also 

measured in TOPMed MESA. The number of genes that we tested for cis-same associations in 

each tissue are listed in Table 2.  
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Table 2. Genes with either predicted or observed expression and protein measurements for 

every tissue. 

Tissue Genes Tested Tissue Genes Tested 

Adipose Subcutaneous 866 Esophagus Mucularis 892 

Adipose Visceral Omentum 881 Heart Atrial Appendage 859 

Adrenal Gland 789 Heart Left Ventricle 822 

Artery Aorta 872 Kidney Cortex 627 

Artery Coronary 828 Liver 774 

Artery Tibial 886 Lung 891 

Brain Amygdala 721 Minor Salivary Gland 817 

Brain Anterior Cingulate 

Cortex BA24 767 

Muscle Skeletal 

798 

Brain Caudate Basal Ganglia 789 Nerve Tibial 921 

Brain Cerebellar Hemisphere 794 Ovary 820 

Brain Cerebellum 780 Pancreas 826 

Brain Cortex 809 Pituitary 847 

Brain Frontal Cortex BA9 791 Prostate 826 

Brain Hippocampus 

758 

Skin Not Sun Exposed 

Subrapubic 881 

Brain Hypothalamus 774 Skin Sun Exposed Lower Leg 898 

Brain Nucleus Accumbens 

Basal Ganglia 772 

Small Intestine Terminal 

Ileum 821 

Brain Putamen Basal Ganglia 767 Spleen 846 

Brain Spinal Cord Cervical C-1 748 Stomach 839 

Brain Substantia Nigra 720 Testis 953 

Breast Mammary Tissue 856 Thyroid 892 

Cells Cultered Fibroblasts 827 Uterus 740 

Cells EBV-Transformed 

Lymphocytes 727 

Vagina 

743 

Colon Sigmoid 853 Whole Blood 796 

Colon Transverse 863 Monocytes – observed  862 

Esophagus Gastroesophageal 

Junction 844 

PBMC – observed  

862 

Esophagus Mucosa 899 T-cells – observed 862 

Note: Observed expression tissues are marked, the rest are predicted expression levels. 
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 As above, we assessed significance via the Benjamini-Hochberg false discovery rate 

(FDR) method. Within each of the 49 tissues with gene expression prediction models, as well as 

the 3 tissues with observed gene expression data, we calculated qvalues for all of the cis-same 

transcript-protein pairs tested using the qvalue R. We further calculated the π1 statistic for the 

cis-same associations tested in every predicted and observed tissue using the qvalue R package 

with a truncated lambda range (0.05 to 0.75), as described above for TOPMed MESA.  

 Finally, in every predicted and observed tissue, we calculated the Pearson correlation of 

gene expression with protein abundance for every gene with a significant cis-same association in 

any tissue. Because some genes were not included in every prediction model and a different set 

of genes were measured via RNA-Seq, we were not able to calculate the Pearson correlation of 

expression and protein levels for every gene in every tissue. To summarize results across tissues, 

we calculated the maximum correlation values between gene expression and protein levels for 

every gene across all the predicted tissues and across all the observed tissues. 



15 

 

Figure 1. Experiment design.  

(a) Overview of TWAS analysis. Genotype data from both the INTERVAL and TOPMed MESA 

cohorts was used to impute genetically regulated transcript levels in 49 different GTEx tissues. 

GReX was linearly associated with measured plasma protein levels for all proteins tested in both 

studies. (b) Model for definition of cis- vs. trans- acting gene regulators of protein abundance. 

Here, the expression of gene X and the abundance of protein Y have a cis-different relationship 

because the genes that encode them are different, but their transcription start sites are within 1 

Mb of each other. Likewise, the expression of gene Y and the abundance of protein Y have a cis-

same relationship because they are encoded by the same gene. Finally, the expression of gene Z 

and the abundance of protein Y have a trans-acting relationship because the transcription start 

sites of the genes that encode them are greater than 1 Mb (in this case, the genes are on different 

chromosomes).  
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RESULTS 

TWAS for Protein Identifies Replicable Gene-Protein Interactions 

 We sought to identify both cis- and trans-acting transcriptional regulators of plasma 

proteins by performing TWAS for protein levels. Using the PrediXcan software framework, we 

tested the genetically regulated component of gene expression (GReX) for association with 

plasma protein levels. Our discovery set included individuals from the INTERVAL cohort 

(n=3,301), and we sought to replicate our findings in the TOPMed MESA cohort (n=971). For 

these individuals, we predicted gene expression using prediction models built in 49 tissues from 

the GTEx project (Figure 1a). Then, we calculated the correlation between predicted gene 

expression and observed protein levels for all 3,622 proteins measured in INTERVAL. We 

quantified significant transcript-protein pairs as cis- (within 1 MB of each other) or trans-acting 

(greater than 1 MB apart) relationships. We further divided the cis-acting pairs into cis-same, 

where a transcript is associated with the protein that it encodes, and cis-different, where a 

transcript is associated with the protein product of a nearby, different gene (Figure 1b). We 

identified 3,699 significant (FDR < 0.05) unique cis-acting associations for 482 unique proteins 

(240 cis-different and 242 cis-same) and 13,598 significant (FDR < 0.05) unique trans-acting 

associations for 2,016 unique proteins in INTERVAL (Figure 2a,d). The TOPMed MESA 

plasma proteome data included 1,039 proteins that were also measured in INTERVAL. Of the 

17,297 significant transcript-protein pairs we discovered in INTERVAL, we tested 8,111 pairs 

for replication in TOPMed MESA and found 1,168 cis-acting pairs replicated for 218 unique  

proteins (92 cis-different and 126 cis-same) and 1,210 trans-acting pairs replicated for 239
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Figure 2. Overview of significant transcript-protein associations. 

(a-c) Tile plot shows relative genomic position of significantly (FDR < 0.05) associated 

transcript-protein pairs. Each circle represents a uniquely associated predicted transcript and 

target protein pair. Gridlines delineate chromosomes and the position along the x-axis 

corresponds to the genomic location in bp of the gene that encodes the predicted transcript while 
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the position along the y-axis corresponds to the genomic location in bp of the gene that encodes 

the target protein. The size of each circle corresponds to the number of tissues (out of all 49) 

where the pair was discovered significantly associated. (a) This plot shows all significantly (FDR 

< 0.05) associated transcript-protein pairs discovered in INTERVAL. (b) This plot shows all 

significantly (FDR < 0.05) associated transcript-protein pairs discovered in INTERVAL that 

were also tested in TOPMed MESA. (c) This plot shows all significantly (FDR < 0.05) 

associated transcript-protein pairs discovered in INTERVAL that were also significant (FDR < 

0.05) in TOPMed MESA. (d) Bar plot of the number of significant (FDR < 0.05) associations 

discovered in INTERVAL, discovered in INTERVAL and tested in TOPMed MESA, and 

discovered in INTERVAL and significantly (FDR < 0.05) replicated in TOPMed MESA.  

 

 

proteins (FDR < 0.05, Figure 2b-d). On average, the significant cis-acting relationships we  

discovered in INTERVAL were shared across more tissues than the significant trans-acting  

relationships we discovered in INTERVAL (Figure 3).   

 

Figure 3. Sharing of cis- and trans-acting effects across tissues in INTERVAL.  

Violin plots depicting the number of tissues in which each significant transcript-protein pair was 

discovered (FDR < 0.05), divided into cis- and trans-acting associations.  
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 Of the transcript-protein pairs tested in INTERVAL, the trans-acting results had the 

lowest expected true positive rate (π1), with a median π1 of 0.004 across all 49 tissues, followed 

by the cis-different results, with a median π1 of 0.099, and the cis-same results, with a median π1 

of 0.278 (Figure 4a, Table 3). We have more confidence in the significant results from 

INTERVAL that were also tested in TOPMed. The median π1 value across tissues increased to 

0.390 for trans-acting relationships, 0.783 for cis-different pairs and 0.888 for cis-same pairs 

(Figure 4b, Table 4).  

 
Figure 4. Expected true positive rates (π1) for transcript-protein pairs across tissues.  

 

(a) π1 values of transcript-protein pairs tested in INTERVAL. Associations were divided into cis-

same, cis-different, and trans-acting and π1 was calculated in every GTEx tissue. (b) π1 values of 

significant (FDR < 0.05) transcript-protein pairs discovered in INTERVAL that were also tested 

in TOPMed MESA. Associations were divided into cis-same, cis-different, and trans-acting and 

π1 was calculated in each GTEx tissue separately. 
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Table 3. INTERVAL π1 values for every tissue 

Tissue Trans-Acting Cis-acting Cis-different Cis-same 

Adipose 

Subcutaneous 0.0047 0.0905 0.0839 0.2950 

Adipose Visceral 

Omentum 0.0038 0.1214 0.1154 0.3107 

Adrenal Gland 0.0052 0.1056 0.0995 0.2943 

Artery Aorta 0.0052 0.1092 0.1012 0.3510 

Artery Coronary 0.0041 0.1185 0.1133 0.2743 

Artery Tibial 0.0040 0.1029 0.0985 0.2341 

Brain Amygdala 0.0043 0.0905 0.0903 0.0959 

Brain Anterior 

Cingulate Cortex 

BA24 0.0020 0.0977 0.0954 0.1683 

Brain Caudate 

Basal Ganglia 0.0015 0.1122 0.1075 0.2598 

Brain Cerebellar 

Hemisphere 0.0030 0.0953 0.0920 0.1975 

Brain Cerebellum 0.0033 0.1012 0.0967 0.2435 

Brain Cortex 0.0023 0.1091 0.1030 0.2958 

Brain Frontal 

Cortex BA9 0.0027 0.1023 0.0970 0.2653 

Brain 

Hippocampus 0.0036 0.0986 0.0923 0.2965 

Brain 

Hypothalamus 0.0026 0.1177 0.1135 0.2479 

Brain Nucleus 

Accumbens Basal 

Ganglia 0.0035 0.0906 0.0853 0.2580 

Brain Putamen 

Basal Ganglia 0.0036 0.1120 0.1050 0.3276 

Brain Spinal Cord 

Cervical C-1 0.0047 0.0825 0.0782 0.2119 

Brain Substantia 

Nigra 0.0032 0.1034 0.0958 0.3386 

Breast Mammary 

Tissue 0.0050 0.1239 0.1165 0.3543 

Cells Cultered 

Fibroblasts 0.0049 0.0872 0.0812 0.2683 

Cells EBV-

Transformed 

Lymphocytes 0.0055 0.1021 0.0954 0.3141 

Colon Sigmoid 0.0035 0.1106 0.1052 0.2739 

Colon Transverse 0.0044 0.1154 0.1115 0.2361 
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Esophagus 

Gastroesophageal 

Junction 0.0034 0.1134 0.1072 0.3008 

Esophagus 

Mucosa 0.0034 0.1093 0.1046 0.2518 

Esophagus 

Mucularis 0.0011 0.1100 0.1034 0.3076 

Heart Atrial 

Appendage 0.0035 0.1127 0.1054 0.3316 

Heart Left 

Ventricle 0.0026 0.0961 0.0874 0.3561 

Kidney Cortex 0.0039 0.1064 0.1037 0.1860 

Liver 0.0051 0.1210 0.1163 0.2663 

Lung 0.0031 0.1173 0.1127 0.2598 

Minor Salivary 

Gland 0.0048 0.1140 0.1087 0.2784 

Muscle Skeletal 0.0034 0.1147 0.1092 0.2792 

Nerve Tibial 0.0055 0.1102 0.1030 0.3301 

Ovary 0.0033 0.0972 0.0914 0.2737 

Pancreas 0.0044 0.1127 0.1049 0.3500 

Pituitary 0.0050 0.0916 0.0854 0.2833 

Prostate 0.0030 0.1039 0.0984 0.2759 

Skin Not Sun 

Exposed 

Subrapubic 0.0038 0.0891 0.0815 0.3227 

Skin Sun 

Exposed Lower 

Leg 0.0041 0.1037 0.0972 0.3051 

Small Intestine 

Terminal Ileum 0.0023 0.0995 0.0952 0.2314 

Spleen 0.0033 0.1053 0.0993 0.2919 

Stomach 0.0041 0.1069 0.1000 0.3163 

Testis 0.0035 0.0958 0.0907 0.2583 

Thyroid 0.0037 0.1112 0.1051 0.3000 

Uterus 0.0041 0.0998 0.0959 0.2241 

Vagina 0.0026 0.1004 0.0975 0.1895 

Whole Blood 0.0026 0.0825 0.0761 0.2816 
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Table 4. TOPMed MESA π1 values for every tissue 

Tissue Trans-Acting Cis-acting Cis-different Cis-same 

Adipose 

Subcutaneous 0.3517 0.7811 0.7418 0.9264 

Adipose Visceral 

Omentum 0.3265 0.7529 0.7138 0.8893 

Adrenal Gland 0.4307 0.8616 0.8309 0.9794 

Artery Aorta 0.3410 0.7311 0.6716 0.9786 

Artery Coronary 0.2554 0.7736 0.7555 0.8493 

Artery Tibial 0.3544 0.8095 0.7720 0.9727 

Brain Amygdala 0.4180 0.7772 0.7607 0.8522 

Brain Anterior 

Cingulate Cortex 

BA24 0.4518 0.7556 0.7179 0.9218 

Brain Caudate 

Basal Ganglia 0.4476 0.8169 0.8065 0.8575 

Brain Cerebellar 

Hemisphere 0.3417 0.7715 0.7545 0.8412 

Brain Cerebellum 0.4520 0.8446 0.8376 0.8787 

Brain Cortex 0.3934 0.7664 0.7493 0.8585 

Brain Frontal 

Cortex BA9 0.3860 0.8247 0.8037 0.9190 

Brain 

Hippocampus 0.4210 0.8350 0.8267 0.8668 

Brain 

Hypothalamus 0.5522 0.8129 0.8011 0.8714 

Brain Nucleus 

Accumbens Basal 

Ganglia 0.4337 0.8005 0.7995 0.8059 

Brain Putamen 

Basal Ganglia 0.4909 0.8254 0.7991 0.9309 

Brain Spinal Cord 

Cervical C-1 0.3899 0.8511 0.8393 0.9059 

Brain Substantia 

Nigra 0.3986 0.7339 0.6943 0.9424 

Breast Mammary 

Tissue 0.3469 0.7406 0.7014 0.8935 

Cells Cultered 

Fibroblasts 0.2617 0.8408 0.8322 0.8793 

Cells EBV-

Transformed 

Lymphocytes 0.3793 0.7590 0.7545 0.7824 

Colon Sigmoid 0.3949 0.7361 0.7297 0.7586 

Colon Transverse 0.4455 0.7872 0.7816 0.8119 
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Esophagus 

Gastroesophageal 

Junction 0.3673 0.8216 0.8071 0.8831 

Esophagus 

Mucosa 0.3807 0.8939 0.8826 0.9436 

Esophagus 

Mucularis 0.3357 0.8678 0.8566 0.9063 

Heart Atrial 

Appendage 0.3969 0.8026 0.7969 0.8235 

Heart Left 

Ventricle 0.4327 0.7376 0.7459 0.7082 

Kidney Cortex 0.3874 0.8443 0.8251 0.9237 

Liver 0.4455 0.7877 0.7741 0.8401 

Lung 0.3502 0.7596 0.7305 0.8757 

Minor Salivary 

Gland 0.3688 0.8299 0.8237 0.8622 

Muscle Skeletal 0.4151 0.8153 0.7949 0.8896 

Nerve Tibial 0.3771 0.7853 0.7520 0.9333 

Ovary 0.3564 0.7627 0.7462 0.8350 

Pancreas 0.4871 0.8268 0.8238 0.8408 

Pituitary 0.3628 0.7373 0.7033 0.8881 

Prostate 0.3753 0.8194 0.7918 0.9448 

Skin Not Sun 

Exposed 

Subrapubic 0.3136 0.8065 0.7784 0.9332 

Skin Sun 

Exposed Lower 

Leg 0.3816 0.8387 0.8243 0.9001 

Small Intestine 

Terminal Ileum 0.4412 0.8430 0.8232 0.9246 

Spleen 0.3356 0.8058 0.7800 0.9175 

Stomach 0.4160 0.7056 0.7101 0.6843 

Testis 0.4175 0.7689 0.7241 0.9738 

Thyroid 0.3648 0.8217 0.8147 0.8516 

Uterus 0.3957 0.8009 0.7831 0.8815 

Vagina 0.4698 0.8451 0.8246 0.9504 

Whole Blood 0.4168 0.9013 0.8902 0.9443 
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Protein Targets of Trans-acting Genes Enriched for TF Target Motifs and GWAS Catalog  

Phenotypes 

 We first tested the protein targets that replicated in TOPMed MESA, divided into targets 

of cis-acting genes and targets of trans-acting genes, for enrichment of motifs targeted by 

transcription factors. While the cis-targets were not enriched for transcription factor targets, the 

trans-targets were enriched for motifs targeted by transcription factors like NFKB2, RELA, 

NFAT1C, FOXF2, AR, GATA1, and STAT1 (Figure 5).  

 

Figure 5. Enrichment of transcription factor binding sites of target proteins of trans-acting genes. 

 

The target proteins of trans-acting genes were significantly enriched for binding motifs of the 

transcription factors listed on the y-axis as annotated in the Molecular Signatures Database. The 

size of each bubble corresponds to the number of genes annotated in the database that we tested 

in our TWAS analysis and the x-axis represents the proportion of those genes whose protein 

products were significantly associated with a trans-acting gene in INTERVAL. The color of each 

bubble represents the p-value of the enrichment test. 
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While we had prediction models for all of these genes in some or all tissues, only RELA, NFATC, 

and NFKB2 were significantly associated with any target proteins in our TWAS analysis. RELA 

was significantly associated with one trans-target, SHISA3, which was not annotated in FUMA 

as having the motif targeted by RELA. NFAT1C was associated with two trans-targets, 

PLAG2G5 and IFNGR2, both of which were not annotated as targets of NFAT1C by FUMA. 

Finally, NFKB2 was significantly associated with one trans-target, RRM1, which was not 

annotated as a target of NFKB2 by FUMA.  

 Furthermore, we tested the cis- and trans-targets for enrichment of GWAS catalog 

associations and found that the trans-targets were enriched for blood protein levels and 

inflammatory bowel disease, and the cis-targets were enriched for blood protein levels, 

ankylosing spondylitis, inflammatory bowel disease, and chronic inflammatory diseases (Table 

5).  

Table 5. Cis- and Trans-targets are enriched for mapped GWAS catalog associations 

(FDR < 0.05). 

Mechanism Gene Set # of Targets 

in Gene Set 

# of Significant 

Targets in Gene Set 

P-value Adjusted 

P-value 

Trans-acting Blood Protein 

Levels 

862 122 2.26e-8 4.10e-5 

Trans-acting Inflammatory 

Bowel Disease 

190 38 2.64e-6 2.39e-3 

Cis-acting Blood Protein 

Levels 

862 229 4.73e-

125 

8.58e-122 

Cis-acting Ankylosing 

Spondylitis 

22 11 1.89e-7 1.62e-4 

Cis-acting Inflammatory 

Bowel Disease 

190 36 2.68e-7 1.62e-4 

Cis-acting Chronic 

Inflammatory 

Diseases 

48 13 5.21e-5 2.36e-2 
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Master Regulatory Regions Enriched for TF Target Motifs and GWAS Catalog  

Phenotypes 

 By quantifying the number of target proteins that each transcript was significantly 

associated with, we identified several loci that may be involved in the regulation of many 

different proteins throughout the genome, which we have named “master regulatory” loci. These 

loci are represented through the vertical lines of dots in Figures 2a-c. We discovered 11 distinct 

master regulatory loci in INTERVAL (Table 6). While most of the loci did not have many 

targets that replicated in TOPMed MESA, there were a few that replicated well, including the C7 

locus on chromosome 5, the SKIV2L locus on chromosome 6, the ABO locus on chromosome 9, 

and the SARM1 locus on chromosome 17 (Table 6). Interestingly, almost none of the targets of 

the largest master regulatory locus discovered in INTERVAL, the MYADM locus on 

chromosome 19 replicated in TOPMed MESA (Table 6). 

 We performed a gene set enrichment analysis of the protein targets in INTERVAL of 

each of these master regulatory loci. For most of the loci, we found no significant enrichment of 

TF targets or GWAS catalog associations in the target proteins. However, we found that the 

target proteins of the ABO locus were enriched (FDR < 0.05) for associations with blood protein 

levels in the GWAS catalog. Furthermore, we found that the target proteins of the C7 locus were 

enriched (p-value: 6.58e-5; adjusted p: 4.02e-2) for a motif (MSigDB: M18461) that is targeted 

by the TF, ARNT. Of the 271 genes in the gene set, we tested 42 in our TWAS and 13 were 

targets of the C7 locus. While ARNT had prediction models in many tissues, it was not 

significantly associated with any of the targets of the C7 locus in our TWAS analysis.  
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Table 6. Master regulatory loci discovered in INTERVAL. 

Locus Genes in Locus Chromosome Location (bp) Unique 

Targets 

Replicated Targets 

(significant / tested) 

1 CFHR3, CFHR1, 

CFHR4 

1 196,774,813 –  

196,888,014 

134 5/56 

2 BCHE 3 165,772,904 56 3/12 

3 C7 5 40,909,497 

 

280 51/103 

4 C6 5 41,142,116 81 9/42 

5 HLA-DQB2, 

HLA-DQA1 

6 32,628,179 –  

32,756,098 

82 10/31 

6 SKIV2L, CYP21A2, 

C4B 

6 31,959,117 –  

32,038,327 

86 18/34 

7 GSDMD 8 143,553,207 54 2/20 

8 ABO 9 133,233,278 55 27/33 

9 SARM1, TMEM199, 

POLDIP2, SUPT6H, 

TNFAIP1, TMEM97, 

IFT20, SLC46A1, 

ERVE-1, SLC13A2 

17 28,232,590 –  

28,662,198 

290 37/86 

10 MYADM, NLRP12, 

AC008753.3 

19 53,787,597 –  

53,864,763 

555 1/218 

11 APOE 19 44,905,791 78 1/17 

 

 Additionally, we performed a gene set enrichment analysis of the master regulatory genes 

involved in each locus that comprised of more than one gene. Four of five loci tested were 

enriched for some GWAS catalog associations (Table 7). Notably, the HLA locus was enriched 

for 52 GWAS catalog associations, including a wide variety of immune-related diseases and 

conditions like neuromyelitis, lymphoma, pneumonia, and more. Only 1 locus was enriched 

(FDR < 0.05) for TF targets; the SARM1 locus on chromosome 17 was enriched (FDR < 0.05) 

for a motif (MSigDB: M826) targeted by the transcription factor, SREBF1. Of the 174 genes in 

this gene set, we tested 153 in our TWAS and 3 were master regulators at this locus: POLDIP2, 

TMEM199, and SUPT6H. While SREBF1 had prediction models in many tissues, it was not 

significantly associated with any target proteins in our TWAS analysis.
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Table 7. Master regulatory genes are enriched for mapped GWAS catalog associations 

(FDR < 0.5). 

Locus Genes in Locus Associated GWAS Catalog Traits 

1 CFHR3, CFHR1, 

CFHR4 

Nephropathy, Age-related macular degeneration, Matrix 

metalloproteinase-8 levels, Complement C3 and C4 levels, IgA 

nephropathy, Advanced age-related macular degeneration 

5 HLA-DQB2, 

HLA-DQA1 

Immunoglobulin A vasculitis, Strep throat, Childhood steroid-sensitive 

nephrotic syndrome, Neuromyelitis optica, Pneumonia, Neuromyelitis 

optica (AQP4-IgG-positive), Chronic hepatitis C infection, Drug-induced 

liver injury (flucloxacillin), Plantar warts, Shingles, Myositis, Multiple 

sclerosis (OCB status), Late-onset myasthenia gravis, Lymphoma, PEG-

asparaginase hypersensitivity without enzyme activity in childhood acute 

lymphoblastic leukemia, Peanut allergy, Response to hepatitis B vaccine, 

Nephropathy, Cervical cancer, Asthma (moderate or severe), Sarcoidosis 

(non-Lofgren's syndrome without extrapulmonary manifestations), IgA 

nephropathy, Allergy, Self-reported allergy, Allergic sensitization, 

Childhood ear infection, Sjögren's syndrome, Primary biliary cirrhosis, 

Tuberculosis, Systemic sclerosis, Tonsillectomy, Hypothyroidism, 

Takayasu arteritis, Chronic lymphocytic leukemia, Squamous cell lung 

carcinoma, Allergic rhinitis, Itch intensity from mosquito bite adjusted 

by bite size, Celiac disease, Asthma or allergic disease (pleiotropy), Lung 

cancer, Rheumatoid arthritis, Red blood cell count, Allergic disease 

(asthma, hay fever or eczema), Asthma, Prostate cancer, Systemic lupus 

erythematosus, Ulcerative colitis, Type 2 diabetes, Autism spectrum 

disorder or schizophrenia, Crohn's disease, Schizophrenia, Inflammatory 

bowel disease 

6 SKIV2L, CYP21A2, 

C4B 

Prostate cancer, Ulcerative colitis, Autism spectrum disorder or 

Schizophrenia, Inflammatory bowel disease 

9 SARM1, TMEM199, 

POLDIP2, SUPT6H, 

TNFAIP1, TMEM97, 

IFT20, SLC46A1, 

ERVE-1, SLC13A2 

Osteoprotegerin levels, Blood protein levels 

10 MYADM, NLRP12, 

AC008753.3 

None 



29 

 

Predicted Gene Expression Correlates Better with Protein Levels than Observed Gene  

Expression 

 We used the RNA-Seq data from TOPMed MESA to test how the correlation of observed 

gene expression with protein abundance compared to that of predicted gene expression with 

observed protein abundance. For each of the 3 tissues with observed gene expression data 

(PBMC, monocytes, T cells), we used PrediXcan to test the cis-same associations between the 

abundance of all 1,300 proteins measured in the study and the observed expression of the genes 

that encode the proteins. We discovered more genes with significant associations between 

predicted expression and observed protein levels (FDR < 0.05) than genes with significant 

associations between observed gene expression and protein levels (FDR < 0.05) associated. In 

total, we discovered 407 genes with a significant cis-same association across all 49 predicted 

tissues and 121 genes with a significant cis-same association across all 3 measured tissues. We 

found a significant cis-same association with both predicted and observed expression for 89 

genes, while the rest were unique associations (Figure 6a).  

 Furthermore, the proportion of true positive cis-same associations (π1) was on average 

higher across predicted tissues than observed tissues (Figure 6b). The observed tissue with the 

highest π1 value was PBMC, at 0.239, followed by monocytes at 0.193, and T cells at 0.077. 

Likewise, the highest π1 in a predicted tissue was 0.491 in Brain Putamen Basal Ganglia and the 

only predicted tissue with a π1 lower than that of PBMC was the Brain Cerebellar Hemisphere at 

0.182 (Table 8). Notably, Whole Blood, the only tissue for which we have both predicted and 

observed expression levels, albeit in different blood cell types, had a higher π1 than all three of 

the observed tissues at 0.331.  
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Table 8. TOPMed MESA cis-same π1 values for every predicted and observed tissue. 

Tissue Cis-same π1 Tissue Cis-same π1 

Brain Putamen basal ganglia 0.4912 Brain Hippocampus 0.3366 

Skin Sun Exposed Lower leg 0.4662 Brain Substantia nigra 0.3319 

Small Intestine Terminal Ileum 0.4610 Whole Blood 0.3311 

Kidney Cortex 0.4480 Breast Mammary Tissue 0.3239 

Esophagus Muscularis 0.4473 Prostate 0.3223 

Uterus 

0.4406 

Skin Not Sun Exposed 

Suprapubic 0.3222 

Liver 0.4317 Artery Aorta 0.3183 

Cells Cultured fibroblasts 0.4195 Brain Cerebellum 0.3168 

Adrenal Gland 

0.4193 

Cells EBV-transformed 

lymphocytes 0.3129 

Minor Salivary Gland 0.4040 Brain Cortex 0.3048 

Esophagus Mucosa 0.3960 Lung 0.3031 

Testis 0.3945 Vagina 0.3028 

Muscle Skeletal 

0.3910 

Esophagus Gastroesophageal 

Junction 0.2962 

Brain Caudate basal ganglia 

0.3896 

Brain Nucleus accumbens 

basal ganglia 0.2905 

Heart Atrial Appendage 0.3850 Colon Sigmoid 0.2872 

Pituitary 0.3845 Brain Amygdala 0.2848 

Brain Hypothalamus 0.3726 Nerve Tibial 0.2764 

Colon Transverse 0.3708 Spleen 0.2747 

Thyroid 0.3651 Artery Coronary 0.2684 

Brain Frontal Cortex BA9 0.3633 Artery Tibial 0.2678 

Adipose Subcutaneous 0.3530 Stomach 0.2662 

Brain Spinal cord cervical c-1 0.3472 Pancreas 0.2418 

Ovary 0.3440 PBMC – observed 0.2393 

Adipose Visceral Omentum 0.3427 Monocytes – observed 0.1928 

Brain Anterior cingulate cortex 

BA24 0.3408 

Brain Cerebellar Hemisphere 

0.1819 

Heart Left Ventricle 0.3408 T-cells – observed  0.0768 

Note: Observed expression tissues are marked, the rest are predicted expression levels. 

 Finally, we wanted to see if the correlation of predicted expression and protein abundance 

was stronger than the correlation of observed gene expression and protein abundance. For the 

union of genes whose expression, predicted or observed, was significantly (FDR < 0.05) 

associated with protein abundance, we calculated the Pearson correlation of expression and 
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protein levels in every tissue where there was a measurement for both traits. When looking at the 

maximum correlation values across the predicted and observed tissues separately, we found that 

GReX on average had a stronger correlation with protein abundance than observed gene 

expression for significant cis-same genes (Figure 6c-d). We found that predicted tissues closely 

related to blood, such as whole blood, and liver ranked high in terms of median correlation of 

expression levels and protein levels by gene, while most of the brain tissues had the lowest 

median correlation of expression levels and protein levels (Figure 7). 
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Figure 6. Cis-same associations using predicted expression vs. observed expression. 

(a) Number of unique genes with a cis-same correlation between expression levels (divided by 

predicted and observed) and protein abundance. (b) Distribution of proportion of true positives 

(π1 values) from tests conducted in all predicted tissues. The vertical red line indicates the tissue 

with observed gene expression that had the highest π1; PBMC at 0.239. (c) Scatter plot 

comparing the maximum correlation of predicted and observed expression with protein 

abundance, by gene. (d) Distribution of maximum Pearson correlation coefficients for correlating 

expression, predicted or observed, of significant cis-same genes with protein abundance. 
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Figure 7. Cis-same correlation of predicted expression and protein levels by tissue.  

 

Distribution of Pearson correlation coefficients for correlating predicted expression of significant 

cis-same genes with protein abundance in every GTEx tissue. Figure is truncated in the y-axis at 

correlation = -0.15 and 0.3.  
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DISCUSSION AND CONCLUSION 

 Here, we applied the PrediXcan framework to test genetically regulated gene expression 

for association with measured plasma protein levels in order to discover gene regulatory 

relationships between both distant (trans-acting) and nearby (cis-acting) genes. Similar to a prior 

study which applied trans-PrediXcan to test genetically regulated gene expression for association 

with observed expression levels, our TWAS method proved more effective at identifying trans-

acting effects than a regular QTL study.24 Compared to a trans-pQTL study performed in our 

discovery cohort (INTERVAL) which found 1,104 proteins with trans-pQTL31 (P < 1.5 × 10-11), 

our method discovered 2,016 protein targets of trans-acting genes, 239 of which replicated in the 

much smaller TOPMed MESA cohort. Methods like TWAS, which prioritize cis-eQTL, have 

been shown to be more effective at discovering trans-acting effects because often trans-eQTL 

act through cis-mediators like nearby transcription factor genes.22 We found that the protein 

targets of trans-acting genes were enriched for transcription factor binding sites, while the cis-

targets were not, supporting the idea that many trans-effects are driven by transcription factor 

genes. Furthermore, we found that the cis-acting associations were shared across more tissue 

than the trans-acting effects, which tended to be more tissue-specific, as has been shown in 

previous eQTL studies.19,20 

 We identified several loci throughout the genome with strong pleiotropic effects where 

one gene, or several in LD, significantly (FDR < 0.05) associated with many protein targets 

throughout the genome. Many of these loci have been identified before, including the ABO, VTN, 
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APOE, CFH, and BCHE loci.28,31,50–52 Here, we called these regions master regulatory loci and 

discovered 11 in INTERVAL and 5 that replicated well in TOPMed MESA. It has been shown 

previously that these trans-acting master regulator genes are enriched for GWAS traits, 

suggesting that trans- protein regulation plays an important role in disease variation.24,51 We 

performed a gene set enrichment analysis of all of the trans-acting genes in each of these master 

regulatory loci as well as the target proteins of each of these master regulatory loci. We found 

that the targets and master regulatory genes of many of these loci were enriched for GWAS 

catalog associations including several autoimmune diseases and other disease phenotypes. For 

example, the CFHR genes were enriched for autoimmune diseases such as IgA nephropathy and 

age-related macular degeneration as well as C3 and C4 levels. Studies have shown that the 

CFHR genes interact with proteins like C3 and C4 in the complement system, a cascade of 

proteins important to the immune response system, thus changes in expression of these master 

regulatory genes could lead to the progression of autoimmune diseases.53   

 We found that our significant results discovered in INTERVAL had a low expected 

proportion of true positives (π1) across all associations tested, though we have more confidence 

in the cis-acting results than trans-acting. This is a symptom of an ongoing issue with identifying 

trans-acting effects; the multiple testing burden is too high due to the high number of 

associations that must be tested combined with the observation that trans-acting effects are 

generally smaller than cis-acting effects.16–19 Nevertheless, we were able replicate many of our 

significant associations discovered in INTERVAL in TOPMed MESA, where we found much 

higher proportions of true positives across all associations tested. In many tissues, we estimated a 

π1 of nearly 1.0 for the cis-same results, indicating a strong correlation between genetically 

regulated gene expression levels and observed protein levels. This is in contrast with many 
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studies that have shown a poor correlation between transcript and protein levels of the same 

underlying gene.35–37,54 One of the main issues in correlating expression levels with protein levels 

is the high fluctuation in these traits due to environmental influence; it has been shown that 

proteins that can be more reproducibly measured, meaning they are less prone to environmental 

variation, have a stronger correlation with expression levels.55 Furthermore, genetically predicted 

expression levels have been shown to strongly correlate with genetically predicted protein 

levels.26  

 Here, we show that genetically predicted expression levels correlate better with plasma 

protein abundance than observed expression levels. We leveraged the PrediXcan framework to 

test both predicted expression in 49 tissues and observed expression in 3 tissues for association 

with plasma protein levels in individuals from the TOPMed MESA cohort. Most of the unique 

associations we discovered with observed expression were also significant when using predicted 

expression and we found many unique associations with predicted expression that we did not 

with observed. Furthermore, we estimated a higher proportion of true positives for our predicted 

expression results. Even in a tissue-matched scenario (comparing predicted expression in Whole 

Blood to observed expression in PBMC), we found a higher proportion of true positive results 

for predicted expression. Additionally, we found that the Pearson correlation of expression levels 

with proteins levels of the same underlying gene was on average higher when working with 

predicted expression than observed expression. We found that tissues that are closely related to 

blood, like Whole Blood and the Liver, which is responsible for secreting many plasma proteins 

into the bloodstream, had a higher correlation of predicted expression levels and protein levels, 

which has been shown previously.26 Furthermore, the brain tissues tended to have the lowest 
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correlation of expression levels and plasma protein levels, perhaps because of the blood-brain 

barrier, as has been suggested previously.26  

 One major limitation of this study is the type of proteomic data we used. Our study was 

not truly proteome-wide, as we could only test the proteins measured by the targeted proteome 

assay. As such, there are likely many regulatory relationships that we were not able to capture 

due to the limited number of proteins measured in both the INTERVAL and TOPMed study. 

Furthermore, we only have proteomic data for plasma proteins when, like gene expression levels, 

protein levels vary across tissues and cell types. Additionally, the aptamers on the SOMAscan 

assays used to target specific proteins are known to sometimes have multiple targets, so some of 

our protein level measurements are inaccurate in that they represent the abundance of multiple 

different proteins.39 Another limitation of the study is that our discovery cohort is not diverse, 

comprising entirely of individuals of European descent, while our replication cohort, which is 

diverse, has a very small sample size. Both these issues limit our ability to discover and replicate 

the transcript-protein regulatory relationships.   

 All of these results highlight the benefits of working with predicted expression over 

observed expression; it is easier to calculate predicted expression than it is to measure observed 

expression, by leveraging information from multiple tissues, you can find more significant 

associations with predicted expression, and by reducing the variation due to environmental 

influence, the expected true positive rate of significant associations discovered with predicted 

expression is much higher.  
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