

12 • Coordination 363

tributed communication system. TCP/IP sockets programming itself presents much
unwanted latency in a clustered environment, since the assumption of the protocol is
that the underlying network is not reliable. Adding more layers atop TCP/IP only
exacerbates the problem of latency.

• Sloppy Object Model: Perhaps the worst aspect of the RMI system is its sloppy
object model. Any class that is going to be used to create remote objects must inherit
from one of Java’s base classes, such as UnicastRemoteObject. This may not
seem like a problem at first, but presents a great deal of difficulty if the class being
served is actually a subclass of another class already. Unlike the Threads classes,
which also have companion interfaces that can be implemented, RMI forces you to
waste inheritance from a class that has no perceptibly useful functionality. This has
also been discussed in a paper written by one of the authors.

There are more reasons; however, this list should be enough for anyone to think twice
before trying to use RMI for an application that was never intended. RMI looks a little too
much like a client–server paradigm, and what we need is a more peer-oriented paradigm.

GMI: Goals and Design Overview

GMI was thus created not as an alternative to RMI, but rather as a building block for build-
ing a peer-oriented communication system. It was also designed with extensibility in
mind. The basic design of GMI consists of a very lean set of classes:

• CallMessage: This is an extension of the Message class. The key difference
between the CallMessage and a Message is the ability to encode and decode.
These functions can be useful to pack or unpack data structures that are sent as mes-
sages.

• Callable: This is an interface that can be implemented so an object can receive
messages. The concept of Callable is very similar to the Deliverable concept
presented in the discussion of SMA, but one level up.

• RemoteCallServer: This is a class that can be used to receive remote calls.
The RemoteCallServer provides an API very similar to Java’s naming
framework (the interface to the rmiregistry). The difference here is that the
RemoteCallServer also doubles as a registry for finding objects by name.

• RemoteCallClient: This is a class used to make remote calls.

Callable: An Interface for Accepting Communication

The notion of a Callable bears many similarities to the MessageRecipient pre-
sented in the SMA classes from the previous chapter. The callable notion refers to any
object that can be called (remotely) with a CallMessage object.

coordination.fm Page 363 Thursday, July 13, 2000 10:40 PM

364 High-Performance Java Platform Computing

package jhpc.gmi;

import java.io.*;

public interface Callable {
 Serializable call(CallMessage message) throws Exception;
}

CallMessage: An Abstract Class for Marshalling and Unmarshalling!

The CallMessage class is used to package parameters for a remote communication. It
is usually subclassed. The CallMessage class provides a single instance variable (tar-
get) that is used to specify the remote invocation target. In GMI, the notion of an invoca-
tion target is a character string that uniquely represents the name of an object on the server
side. A similar idea is found in Java’s RMI with the addition of a special URL syntax.
(RMI objects are referred to with a string of the form rmi://host:port/object-name.) We
have not chosen this approach in GMI, since a client holds a reference to a remote call
server (i.e., the host–port combintation is encapsulated in a connection), and thus a partic-
ular name can only refer to an object at a specific remote location. As we will demonstrate
shortly, this framework is very transparent and easy to understand and minimizes much
unwanted complexity (and overhead) that is found in RMI itself. Consider the following
code:
package jhpc.gmi;

import java.io.*;

public abstract class CallMessage implements Serializable {
 protected String target;

 public CallMessage(String target) {
 this.target = target;
 }

 public void setTarget(String target) {
 this.target = target;
 }

 public final String getTarget() {
 return target;
 }

}

A couple of points are in order about the CallMessage:

coordination.fm Page 364 Thursday, July 13, 2000 10:40 PM

12 • Coordination 365

1. Serializable: Any message must be serializable. Java object serialization is
provided in the ObjectInputStream and ObjectOutputStream classes,
which have the capability of reading and writing objects, respectively. We have not
covered serialization in this book (again leaving the discussion to other books that
already cover this material in detail), but make use of it only for exchanging objects
between the client and the server (and vice versa).

2. CallMessage(String target): All subclasses must call this constructor to
ensure that the target object name field is properly initialized. It is permitted to have
a null target object (acceptable only when a message is a reply from a remote call).

RemoteCallServer

Similar to the MessageServer class found in the SMA framework from the networking
chapter, GMI provides similar classes with different names: RemoteCallServer (to
provide basic registration facilities), RemoteCallServerDispatcher (to actually
service the remote call), and RemoteCallClient (to allow clients to reach a
RemoteServer to make calls).

The RemoteCallServer bears some similarities to RMI. There are two sets of meth-
ods: registration of Callable instances and serving remote calls.

Let us first consider the aspects of the RemoteCallServer that pertain to registration:

1. registeredObjects: All registrations are maintained in a Java Hashtable
object. The key is simply a string that represents a user-defined name for contacting
a Callable object remotely; the value is the Callable object itself.

2. bind(): This method is used to bind a given Callable instance to a user-defined
name. This method simply uses the underlying Hashtable put() method to
store the association in the Hashtable.

3. unbind(): This method allows a previous binding (done with bind()) to be
remoted from the Hashtable of registered objects.

4. lookup(): This method looks up a previously defined binding.

Remember that this is not RMI! These functions are all intended to be called on the server
side of the picture only. Clients are fully insulated from all details of registration and sim-
ply refer to remote objects by specifying the target object name in the CallMessage.
We have chosen names similar to those found in the naming framework of RMI simply to
ease the transition to GMI and not with the purpose of maintaining (or promising) any
degree of compatibility.

coordination.fm Page 365 Thursday, July 13, 2000 10:40 PM

366 High-Performance Java Platform Computing

Consider the following code:

package jhpc.gmi;

import java.net.*;
import java.io.*;
import java.util.*;

public class RemoteCallServer extends Thread {
 private Hashtable registeredObjects = new Hashtable();
 private ServerSocket callListener;

 public RemoteCallServer(int port) throws IOException {
 callListener = new ServerSocket(port);
 }

 public synchronized void bind(String target,
 Callable callable) {
 registeredObjects.put(target, callable);
 }

 public synchronized void unbind(String target) {
 registeredObjects.remove(target);
 }

 public synchronized Callable lookup(String target) {
 return (Callable) registeredObjects.get(target);
 }

 public void run() {
 while (true) {
 try {
 Socket s=callListener.accept();
 RemoteCallServerDispatcher csd =
 new RemoteCallServerDispatcher(this, s);
 csd.setDaemon(false);
 csd.start();
 } catch(Exception e) { System.out.println(e); }
 }
 }
 }
}

The rest of what you see in this class is dedicated to “being a server.” This code is very
similar to what is found in the SMA classes. This code is intended to be run as a thread.
The run() method contains the familiar server loop. When a connection is accepted, a
RemoteCallServerDispatcher instance is created to handle the incoming call. It

coordination.fm Page 366 Thursday, July 13, 2000 10:40 PM

12 • Coordination 367

is in this class where there are notable differences from the comparable SMA class
MessageServer. The most important detail to notice in the server loop is
that a reference to the RemoteCallServer instance this is passed to the
RemoteCallServerDispatcher instance, thus making it possible for the various
dispatcher instances to look up callables to perform the remote call.

RemoteCallServerDispatcher

The RemoteCallServerDispatcher class is similar to the
MessageServerDispatcher class of SMA. The notable difference is that
DataInputStream and DataOutputStream have been replaced with
ObjectInputStream and ObjectOutputStream classes, which allow arbitrary
Java objects to be exchanged between the RemoteCallClient and itself.1

The constructor initializes the in and out variables as done in the
MessageServerDispatcher class, this time initializing the
ObjectInputStream and ObjectOutputStream from the InputStream and
OutputStream, respectively, associated with the incoming socket:

package jhpc.gmi;

import java.io.*;
import java.net.*;

public class RemoteCallServerDispatcher extends Thread {
 RemoteCallServer callServer;
 Socket socket;
 ObjectInputStream in;
 ObjectOutputStream out;

 public RemoteCallServerDispatcher(RemoteCallServer callServer,
 Socket socket)
 throws IOException {
 this.callServer = callServer;
 this.socket = socket;
 InputStream inRaw = socket.getInputStream();
 this.in = new ObjectInputStream(inRaw);
 OutputStream outRaw = socket.getOutputStream();
 this.out = new ObjectOutputStream(outRaw); }

1 We used serialization for pedagogical reasons. Although Java object serialization has
been much maligned for having a multitude of performance and other implementation-
related problems, it is (quite frankly) nice to be able to move data structures (even those
as simple as subarrays) in the examples that follow. A version of GMI that does not use
Serializable and that is similar to SMA is provided in the accompanying CD and
on the book Web site.

coordination.fm Page 367 Thursday, July 13, 2000 10:40 PM

368 High-Performance Java Platform Computing

 public void run() {
 CallMessage message = null;
 try {
 while (true) {
 message = (CallMessage)in.readObject();
 if (message instanceof Goodbye) {
 out.writeObject(message);
 out.close();
 return;
 }
 Callable callTarget =
 callServer.lookup(message.getTarget());
 Serializable result;
 if (callTarget != null)
 result = callTarget.call(message);
 else
 result = null;
 out.writeObject(result);
 out.flush();
 }
 } catch (EOFException e1) {
 try {
 System.err.println(e1);
 out.close();
 socket.close();
 e1.printStackTrace();
 } catch (Exception e2) {
 System.err.println(e2);
 e2.printStackTrace();
 }
 } catch (Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
}

The run() method uses the readObject() method to read a CallMessage object
from the underlying stream. We know for a fact that an object of type CallMessage or
subclass thereof is the only type of object that can be read from the underlying stream.
(You can verify this by studying the RemoteCallClient code in the next section, but
trust us for the time being!) The following steps are done upon receiving a
CallMessage (message):

1. The message is first checked to determine whether it is the reserved Goodbye mes-
sage. The Goodbye message (which is a subclass of CallMessage) exists to

coordination.fm Page 368 Thursday, July 13, 2000 10:40 PM

12 • Coordination 369

enable the client to politely (as opposed to rudely) go away. Connections with the
client are persistent and thus only go away when either (a) the client sends the
Goodbye message, or (b) an exception occurs. If the Goodbye message is
received, the connection with the client is gracefully closed, and the dispatcher
thread exits gracefully as well. Otherwise, continue to step 2.

2. The message is then examined for the target object name. The target object name is
not supposed to be null; however, if it is, the message simply cannot be delivered,
and null is returned. The only condition by which null is returned is when no invoca-
tion takes place. The call server (i.e., the RemoteCallServer object that created
this dispatch thread, or, more appropriately, the parent) is contacted to actually per-
form the call. It is entirely possible that the target name refers to an object that does
not exist; however, this also results in a null return.

3. Once the invocation is completed, a reply is returned. This reply must be sent to the
RemoteCallClient object, using the writeObject() method.
The flush() method is called every time an object is written to an
ObjectOutputStream. This is, in general, necessary, because Java streams are
buffered. Failing to flush() may result in the opposite end of this connection (a
RemoteCallClient object) being blocked indefinitely on a readObject()
call.

Thus, the RemoteCallServerDispatcher code is in many respects identical (in
principle) to the MessageServerDispatcher code, with the notable difference
being that serializable objects are involved. From the standpoint of the server side, the
RemoteallServerDispatcher does virtually all of the work, except for managing
the remote objects and actually performing the remote calls (both of which are left to the
RemoteCallServer that created the RemoteCallServerDispatcher instance).

RemoteCallClient

The RemoteCallClient class is essentially the user interface that allows clients to
easily send CallMessage objects to a remote object. An initial connection must first be
made to a RemoteCallServer. The constructor for this class, much like the SMA
MessageClient, allows a host and port combination to be specified. A socket is
opened, and (as in the RemoteCallServerDispatcher) ObjectInputStream
and ObjectOutputStream references are obtained for communication with the
server.

coordination.fm Page 369 Thursday, July 13, 2000 10:40 PM

370 High-Performance Java Platform Computing

The work done in the call() method is very similar to the work done by the
RemoteCallServerDispatcher server loop shown earlier. The parameter to the
call() method is a single CallMessage instance.2

package jhpc.gmi;

import java.io.*;

import java.net.*;

public class RemoteCallClient extends Thread {
 Socket socket;
 ObjectOutputStream out;
 ObjectInputStream in;
 OutputStream debug = null;

 public RemoteCallClient(String host, int port)
 throws IOException {
 socket = new Socket(host, port);
 out = new ObjectOutputStream(socket.getOutputStream());
 in = new ObjectInputStream(socket.getInputStream());
 }

 public Object call(CallMessage message) {
 try {
 out.writeObject(message);
 out.flush();
 } catch(Exception e) {
 System.err.println(e);
 e.printStackTrace();
 return null;
 }

 Object result;
 try {
 result = in.readObject();
 return result;
 } catch(Exception e) {
 System.err.println(e);
 e.printStackTrace();
 return null;
 }
 }

2 This is where the difference between GMI and RMI becomes very apparent. Our idea of
a call is simply that a message is to be delivered. Our approach makes the call-by-copy
semantics of RMI very obvious, thus resulting in a more transparent (and honest)
abstraction for communication.

coordination.fm Page 370 Thursday, July 13, 2000 10:40 PM

12 • Coordination 371

 public Object call(String altTarget, CallMessage message) {
 message.setTarget(altTarget);
 return call(message);

 }

 public void disconnect() {
 try {
 out.writeObject(new Goodbye());
 out.flush();
 Object result = in.readObject();
 out.close();
 socket.close();
 } catch(Exception e) {
 System.err.println(e);
 e.printStackTrace();
 }
 }
}

The call() method takes the CallMessage object (which is known to be of type
Serializable) and writes it to the network. Then, the reply is read from the server,
which must also be a CallMessage. This reply is then returned as the result of
call().

GMI is intended to be a simple remote procedure-calling framework. To be fair, let us say
that there are a good number of things we have not done that you would find in the RMI
framework from Sun. These details are summarized as follows:

1. No remote exceptions: This version of GMI does not handle remote exceptions. It is
rather trivial to incorporate this enhancement, since it is merely a matter of reserving
space for an Exception reference in CallMessage. An enhanced version of
GMI can be downloaded from the course Web site.

2. No stubs and skeletons: Stubs and skeletons have been completely eliminated from
this design. This is because we are less concerned with call transparency (i.e., the
appearance that a remote call is just like calling a local function) than the potential
for getting good performance. Supporting call transparency has the (undesirable)
property of adding layers, which simply is not efficient. Since we are going to be
adding a layer to GMI (Memo), the intent is to keep the number of layers to a mini-
mum, while maintaining a sound design from an engineering and computing per-
spective.

coordination.fm Page 371 Thursday, July 13, 2000 10:40 PM

372 High-Performance Java Platform Computing

3. No forced subclassing: Classes used to make remote objects in RMI must subclass
UnicastRemoteObject, and all methods must throw RemoteException.
This is extremely cumbersome and almost makes the call transparency of RMI not
worth the trouble, since you must be aware of so many details of the typing system
in order to get the results. With GMI, any class can easily be made remote simply by
implementing the Callable interface, providing a call() method, and provid-
ing an appropriate subclass of CallMessage to communicate to and from the
remote object.

4. Calls are not synchronized: When you open a connection between client and server,
the calls are not synchronized. This capability has been provided strictly for the
implementation of our higher level message passing systems, which require the abil-
ity to block (remotely). This means that calls must be explicitly locked that need to
be atomic. Our implementation fully protects you on the server side, since a separate
dispatcher is created to service each client, so you only need be concerned when cre-
ating client side threads that are all sharing a connection to a common
RemoteCallServer. An alternative is to simply make separate connections to
the RemoteCallServer using multiple RemoteCallClient instances (i.e.,
one instance of RemoteCallClient per thread).

Memo: A Remote Interface to SharedTableOfQueues
In Chapter 9, we presented the shared-table-of-queues abstraction, which represents a
major building block of a coordination system. We created the shared table of (unordered)
queues after observing that systems such as Linda (from Yale University) and Java Spaces
are really nothing more than extensions of this fundamental principle that has been used in
computing since the early days of operating systems. Linda and Java Spaces are both
examples of tuple spaces.

The Memo system is an implementation of a tuple space; however, the concept of a tuple
has been superseded by an object, which is a much more general concept than a tuple.

Design

The design of Memo is relatively straightforward. The GMI classes presented in the previous
section are used to provide a remote interface to the SharedTableOfQueues class pre-
sented earlier. The following is a summary of the different key classes and their purpose:

1. MemoMessage: This abstract class (derived from CallMessage) is used to
request one of the various remote methods from the SharedTableOfQueues
class. Since it is a subclass of CallMessage, a target object name must be speci-
fied. The additional method go(SharedTableOfQueues stoq) that allows
the operation to be performed once the MemoServer has control of the
MemoMessage is provided.

coordination.fm Page 372 Thursday, July 13, 2000 10:40 PM

12 • Coordination 373

2. MemoServer: This class implements the Callable interface. It is used to accept
the various instances of a subclass of MemoMessage (which is a subclass of
CallMessage). When a given MemoMessage is received, an appropriate action
will take place on the SharedTableOfQueues instance.

3. MemoClient: This class is used to provide the same methods for the client that are
available in the SharedTableOfQueues class. Every method in this class has
the same general implementation. The parameters are packed into one of the various
MemoMessage subclass instances and sent to a remote MemoServer. Then, the
result of the remote call is obtained as passed back to the client.

In the interest of conciseness, we will only discuss a few of the methods. As our examples
in this chapter only make use of the basic methods (the put() and get() methods), we
shall only discuss these two here and leave the rest for self-study (and a future book, an
unresolved forward reference).

The following code shows the MemoMessage class:

public abstract class MemoMessage extends CallMessage {

 public MemoMessage(String target) {
 super(target);
 }

 public abstract Serializable go(SharedTableOfQueues stoq)
 throws Exception;

}

This class is marked abstract because instances of it are never created. The difference
between CallMessage and MemoMessage is simply the go() method. The go()
method must be overridden in the subclass to perform the operation on a remote
SharedTableOfQueues (stoq).

The MemoGet subclass of MemoMessage is as follows:
class MemoGet extends MemoMessage {
 Serializable key;

 public MemoGet(String target, Serializable key) {
 super(target);
 this.key=key;
 }

 public Serializable go(SharedTableOfQueues stoq)
 throws Exception {
 return (Serializable) stoq.get(key);
 }
}

coordination.fm Page 373 Thursday, July 13, 2000 10:40 PM

374 High-Performance Java Platform Computing

This class shows the essence of how GMI programming is done in practice. Typically, a
constructor is provided that initializes the target object name and whatever parameters
would normally be required to perform the remote call (thinking in RPC or RMI terms).
Here the parameter that is needed is key. Why? Recall the method header from the
SharedTableOfQueues class:

public Object get(Object key) throws InterruptedException

In the constructor for MemoGet, we translated key from Object to Serializable.
This was to ensure that the message and any object references it contains are
Serializable. This is not required, but rather is a matter of personal preference. It
would have been perfectly acceptable to pass an Object as the parameter and allow an
exception to occur if the key in fact proved not to be Serializable. As there was no
loss of generality, we chose to make the interface safe from the end-user perspective.

Let us now consider the MemoPut message, which is used to access the
SharedTableOfQueues put() function. Recall that the put() method has the fol-
lowing form:

public void put(Object key, Object value)

The following code shows the MemoPut class:

class MemoPut extends MemoMessage {
 Serializable key, value;

 public MemoPut(String target, Serializable key,
Serializable value){

 super(target);
 this.key=key;
 this.value = value;
 }

 public Serializable go(SharedTableOfQueues stoq) {
 stoq.put(key,value);
 return new Ok(true);
 }
}

In this case, the constructor now has two parameters in addition to the target object name:
key and value. Again, as a matter of preference and concern for the end user, we have
chosen to make both of these parameters Serializable.

The operation is performed on the actual SharedTableOfQueues in the go()
method. When writing remote interfaces to void methods, it is necessary to return a
value. GMI provides a class for general-purpose acknowledgments (Ok) that can be set
true or false to indicate success or failure. Here, we unconditionally indicate that the

coordination.fm Page 374 Thursday, July 13, 2000 10:40 PM

12 • Coordination 375

remote operation was successful (which will only occur when there is no exception caused
by the put() call).

Let us now consider the case of the SharedTableOfQueues runDelayed()
method, which allows a thread to perform a computation (asynchronously) that, when
completed, leaves a result in the SharedTableOfQueues for subsequent retrieval.

The runDelayed() method has the following form:
public void runDelayed(Object key,Runnable r)

This is parsed as “start the Runnable r remotely as a thread, and leave the result behind
as if MemoPut(key, r) had been performed.”

The following code shows the MemoRunDelayed class:
class MemoRunDelayed extends MemoMessage implements Runnable {
 Serializable key;
 Serializable runnable;

 public MemoRunDelayed(String target, Serializable key,
 Serializable runnable) {
 super(target);
 this.key = key;
 this.runnable = runnable;
 }

 public Serializable go(SharedTableOfQueues stoq) {
 stoq.runDelayed(key, this);
 return new Ok(true);
 }

 public void run(){
 if (runnable instanceof Runnable) {
 Runnable r = (Runnable)runnable;
 r.run();
 } else {
 // Strictly speaking, an exception should be thrown here.
 }
 }
}

This class shows some of the problems of working with interfaces (something you must
know how to do, regardless of whether you use GMI, RMI, or CORBA). We want the abil-
ity to guarantee that both parameters (key and r) are Serializable. We also want the
ability to guarantee that the parameter r is Runnable.3 Ultimately, we decided in favor
of enforcing the Serializable interface (which, if not checked, results in a great deal
of trouble when working with object streams) and performing a run-time check just as we
are about to run the Runnable.

coordination.fm Page 375 Thursday, July 13, 2000 10:40 PM

376 High-Performance Java Platform Computing

Notice that the go() method simply calls the runDelayed() method of the
SharedTableOfQueues class and returns an Ok message immediately. The
runDelayed() method, in turn, creates a Thread instance from this message, hence the
presence of the run() method. This run() method is simply a delegate that dispatches the
actual Runnable r that was passed as part of the MemoRunDelayed message.

The remaining MemoMessage subclasses are all fairly straightforward. Here, we have
presented the two easiest to follow (MemoGet and MemoPut) and the most difficult
(MemoRunDelayed). All code is provided on the book CD and Web site.

The key thing to understand is that the go() method in the MemoMessage basically is
where the remote operation is performed. This allows the messages themselves to play a
role in carrying out the remote operation. It is for this reason that the MemoServer code
will be fairly straightforward to understand, since the MemoServer instance simply
takes a message that has been received and instructs it to perform the operation directly on
a SharedTableOfQueues object.

MemoServer

Not surprisingly, the MemoServer code is straightforward and almost requires no addi-
tional information to be said about it. Nonetheless, we do offer a few words to tie a few
loose ends together. The code is as follows:

public class MemoServer implements Callable {

 SharedTableOfQueues stoq = new SharedTableOfQueues();

 public Serializable call(CallMessage message)
 throws Exception {

 if (message instanceof MemoMessage) {
 MemoMessage mm = (MemoMessage) message;
 Serializable reply = mm.go(stoq);
 return reply;

 } else {
 return new Ok(false);
 }
 }
 }
}

3 Wish list for a language extension in Java: putDelayed(Serializable key,
Serializable & Runnable r). The parameter r would take on the type
Serializable; however, it would be staically known to having met the requirements
of both interfaces. Java really needs this!

coordination.fm Page 376 Thursday, July 13, 2000 10:40 PM

12 • Coordination 377

MemoServer is a class that implements Callable, which is required of any class that
wants to act in a remote setting. It simply creates the SharedTableOfQueues instance
(which will be used remotely) and provides a call() method. The code for performing the
call on the server side is very straightforward. The message is checked to ensure that it is a
MemoMessage (or a subclass). The downcast is performed, and the MemoMessage itself
performs the operation on the SharedTableOfQueues instances stoq. In the unlikely
event that the wrong type of message gets passed to the call, the general-purpose acknowl-
edgment message Ok is returned with a status of false. This will, in fact, never occur.

A few words are in order about RPC in a parallel context. First, note that the call()
method itself is not synchronized. Call synchronization is optional. If you need pure RPC
semantics and have no need for the remote calls to block indefinitely (which we do in the
case of the put() and get() methods), you should use the synchronized keyword
accordingly.

Note that the MemoServer class, despite having the word “server” in its name, is not in
fact the server. GMI provides RemoteCallServer, which contains the actual server
loop. A MemoServer is created (trivially) by creating a RemoteCallServer instance
and binding a name through which the MemoServer instance will be contacted:

RemoteCallServer server = new RemoteCallServer(port);
server.bind(“memo”, new MemoServer());

Any application may create a MemoServer simply by adding the preceding two lines.
We provide an example server in the MemoServer class as an inner class.

MemoClient

The MemoClient is provided as a convenience class, so users of the Memo system do not
need to make direct use of the various MemoMessage subclasses to perform Memo oper-
ations. Thus, users of the Memo system are completely isolated from the underlying com-
munication system and simply make use of functions from the familiar
SharedTableOfQueues class.

The code for MemoClient is as follows:
public class MemoClient {

 RemoteCallClient rc;
 String target;
 String host;
 int port;

 public MemoClient(String host, int port, String target)
 throws Exception {
 this.host = host;
 this.port = port;
 this.rc = new RemoteCallClient(host,port);
 this.target = target;
 }

coordination.fm Page 377 Thursday, July 13, 2000 10:40 PM

378 High-Performance Java Platform Computing

 public void disconnect() {
 rc.disconnect();
 }

 public void goodbye() {
 rc.disconnect();
 }

 public void setTarget(String target) {
 this.target = target;
 }

 public Object get(Serializable key)
 throws InterruptedException {
 MemoGet mg = new MemoGet(target, key);
 return rc.call(mg);
 }

 public Object put(Serializable key, Serializable value) {
 MemoPut mp = new MemoPut(target, key, value);
 return rc.call(mp);
 }

 public Object getCopy(Serializable key)
 throws InterruptedException {
 MemoGetCopy mgc = new MemoGetCopy(target, key);
 return rc.call(mgc);
 }

 public Object getCopySkip(Serializable key) {
 MemoGetCopySkip mgcs = new MemoGetCopySkip(target, key);
 return rc.call(mgcs);
 }

 public Object getSkip(Serializable key) {
 MemoGetSkip mgs = new MemoGetSkip(target, key);
 return rc.call(mgs);
 }

 public Object runDelayed(Serializable key, Runnable r)
 throws Exception {
 if (r instanceof Serializable) {
 Serializable rs = (Serializable) r;
 MemoRunDelayed mrd = new MemoRunDelayed(target, key, rs);
 return rc.call(mrd);
 } else throw new Exception(“r not Serializable”);
 }
}

coordination.fm Page 378 Thursday, July 13, 2000 10:40 PM

12 • Coordination 379

The code should be fairly straightforward to understand. To create this class, we essen-
tially copied all of the methods from the SharedTableOfQueues class and added the
following:

1. A constructor to initiate the remote connection via a RemoteCallClient
object. The only aspect that is exposed to end users is the target object name. This is
necessary to allow for the possibility of creating an arbitrary number of
MemoServer instances and allowing clients the freedom to connect to them.

2. The various methods all correspond to existing SharedTableOfQueues meth-
ods, except for the goodbye() and disconnect() methods, which are used to
politely disconnect from the GMI RemoteCallServer instance. For the most
part, every method simply packages the parameters into a MemoMessage (or sub-
class thereof) and then issues a call via the RemoteCallServer.

The MemoClient provides a glimpse for how the GMI system could eventually become
a transparent remote procedure-calling system, similar to RMI; however, this is well
beyond the scope of this book. Our purpose has been to use the notion of remote procedure
calling as a means to an end and not the end result itself. The Memo system is much more
well-suited to thinking about parallel and distributed programming (where more than two
entities are involved) than remote procedure calls (and RMI), and the rest of this section is
dedicated to demonstrating the applicability of Memo to writing a few parallel codes.

Vector Inner Product
The first code example we shall consider is the vector inner product. The intention of this
example is to show the basic capabilities that are possible with Memo. The vector inner
product is not considered a computational grand challenge. Nonetheless, it is a good peda-
gogical example of how many interesting parallel problems are decomposed and solved
using multiple processes running on one or more computers.

The idea of the vector inner product is very simple. Two vectors (arrays) of floating-point
values are defined — v and w, with values v=(v0, v1, ..., vN-1) and w=(w0, w1, ..., wN-1). The
inner product is computed by summing up the products of all corresponding elements in
vectors v and w:

The approach taken to compute the inner product is to decompose the problem (of size N)
into smaller parts of size K, where N divides K evenly. Then the same algorithm is used to

z v
I
∗w

I
I 0=

N 1–

∑=

coordination.fm Page 379 Thursday, July 13, 2000 10:40 PM

380 High-Performance Java Platform Computing

work on the smaller parts. Of course, the result obtained by solving each part is only a par-
tial result, so the partial results must be collected at the end to obtain the total result.

In pseudocode,

Let P = N / K, where P is the number of parts to work on.

for j in 0..P-1 (this can be done concurrently)

partialSum[j] = sum(vI * wI), for I in 0..K-1

partialSum[j] = 0, for all j in 0..P-1

totalSum = 0;

for j in 0..P-1 (this must be done sequentially)

totalSum += partialSum[j];

The ability to do identical tasks concurrently is something we refer to as a job jar. A job
jar, much like a cookie jar, allows you to choose any task from the job jar and work on it.
Here, the job jar will contain a pair of subvectors for which the (partial) inner product is to
be computed.

The code presented next shows the general structure of the VMpy class, which only con-
sists of static methods that actually coordinate the basic computation. We will then walk
through the various methods and explain what is going on. In order for this program to
work, it must be run P times, where P corresponds to the number of parts into which the
vector inner product has been decomposed.

public class VMpy {

 public static void main(String[] args)

 public static void createWork(MemoClient memo, int dim, int N)

 public static void doWork(MemoClient memo, int partNumber)

 public static double mergeResults(MemoClient memo,int totalParts)

 public static class VectorPair implements Serializable { ... }
}

The VMpy class is where you will find the pseudocode just shown. In fact, the pseudocode
is found in the main() method. We’ll get to it shortly, but first we provide an explanation
for the various static methods and other goodies found in this class:

1. main(): This is the actual driver for the entire computation. The command line is
parsed here for the problem parameters and depending on the part being worked on,

coordination.fm Page 380 Thursday, July 13, 2000 10:40 PM

12 • Coordination 381

the remaining functions are called: createWork(), doWork(), and
mergeResults().

2. createWork(): This function is only called by the process that is working on part
0. It is used to define entries in the Memo space.

3. doWork(): This function is called by all processes. This function will get entries
from the Memo space and put partial results back into the Memo space.

4. mergeResults(): This function is only called by the process that is working on
part 0. This function basically collects all of the partial results from the Memo space
and prints the final result.

The nested VectorPair class is used as a “wrapper” to package the work to be done. It
simply holds references to two arrays of double (double[]) for which the partial inner
product is to be computed. We chose to bundle the two arrays together in a single object to
make it clear that the inner product is a job to be done that is placed in the job jar. When a
given process gets the job from the job jar, it can simply tell the object to perform its task
with little or no concern about how to actually do the task. In the case of the task, the
innerProduct() method is called, which returns a Double value. This value can
then be inserted into the Memo space as a (partial) result for later accumulation.
public static class VectorPair implements Serializable {

 int partNumber;
 int dimension;
 private double[] v;
 private double[] w;

 public VectorPair(int partNumber, int dimension)
 public Double innerProduct()
 }

Let’s now discuss the code from the top down, starting from the main() method. This is
shown as follows:
 public static void main(String[] args) {
 try {
 if (args.length < 5) {
 System.err.println(“VMpy host port dim part# N”);
 return;
 }
 String memoHost = args[0];
 int memoPort = Integer.parseInt(args[1]);
 int dimension = Integer.parseInt(args[2]);
 int partNumber = Integer.parseInt(args[3]);
 int totalParts = Integer.parseInt(args[4]);

coordination.fm Page 381 Thursday, July 13, 2000 10:40 PM

382 High-Performance Java Platform Computing

 if (dimension % totalParts != 0) {
 System.out.println(“dimension % totalParts != 0”);
 return;
 }

 MemoClient mc =
 new MemoClient(memoHost, memoPort, “memo”);
 if (partNumber == 0) {
 createWork(mc, dimension, totalParts);
 doWork(mc, partNumber);
 double result = mergeResults(mc, totalParts);
 } else
 doWork(mc,partNumber);
 } catch (Exception e) {
 System.out.println(e);
 e.printStackTrace();
 return;
 }
 }

The main() method is called by every worker that will participate in the calculation of
the vector inner product. A number of parameters must be passed on the command line to
determine what this particular worker will do:

• memoHost: This is the hostname to use to contact a MemoServer.

• memoPort: This is the port number where the MemoServer is listening.

• dimension: This stores the dimension of each vector. This code does not ensure
that both vectors in fact have the same dimension.

• partNumber: This holds the number the process will be responsible for working on.

• totalParts: This is the total number of processes that will be participating in the
computation.

Once the command line parameters have been processed, the real work begins. The work
to be performed depends on whether partNumber is zero. In parallel-computing appli-
cations, one of the parts usually has the added responsibility of creating the work to be
done. By convention, this is usually part 0. The Memo system does not impose this
requirement, unlike other message passing frameworks. Instead, Memo views process
numbering as something beyond the scope of the framework that can be addressed by a
process management framework.4

If the part number is zero (i.e., the “master”), the following methods are called:

• createWork(): This is used to decompose the work of the inner product into P
parts and store them in the Memo space.

coordination.fm Page 382 Thursday, July 13, 2000 10:40 PM

12 • Coordination 383

• doWork(): Although the master is responsible for creating the work to be done, the
master also participates in doing the work.

• mergeResults(): The master will wait for all of the results to be computed by the
various workers and put the final result together simply by adding up the partial sums.

If the part number is nonzero, the doWork() method is the only method that is called.

The createWork() method is as follows:
 public static void createWork(MemoClient memo, int dim, int N)
{
 try {
 int blockSize = dim / N;
 for (int i=0; i < N; i++) {
 VectorPair vp = new VectorPair(i, blockSize);
 memo.put(“pair” + i, vp);
 }
 } catch(Exception e) {
 System.out.println(e);
 e.printStackTrace();
 }
 }

The createWork() method is given a reference to the MemoClient object, the
dimension of the vector(s), and the number of parts (N). N VectorPair instances are
created (randomly generated) and inserted into the MemoSpace. In the interests of safety,
each of the entries in the Memo space is named “pair” + i (i.e., “pair0”, “pair1”, ...
“pairN-1”) to ensure that every worker gets precisely one unit of work to do. It is not
required to do this. You could simply put all of the work into key pair, and the
SharedTableOfQueues will be smart enough to ensure that all of the entries are
stored safely in the queue named pair.5

The doWork() method is responsible for doing the actual work (the actual work being
the inner product itself). The code is as follows:

4 Many approaches exist for the management of processes. In this chapter, we will create
all of the participant processes with a script. This script will allow you to start all of the
processes locally (on the same computer) or on a list of computers. A separate frame-
work is being developed by the JHPC research group (the computational neighborhood)
that makes the management of parameters and process numbering completely transpar-
ent. See http://www.jhpc.org.

5 The version that works this way is provided on the book Web site.

coordination.fm Page 383 Thursday, July 13, 2000 10:40 PM

384 High-Performance Java Platform Computing

 public static void doWork(MemoClient memo, int partNumber) {
 try {
 VectorPair pair;
 pair = (VectorPair) memo.get(“pair” + partNumber);
 Double partialResult = pair.innerProduct();
 memo.put(“partial” + partNumber, partialResult);
 } catch(Exception e) {
 System.out.println(e);
 e.printStackTrace();
 }
 }

A VectorPair instance is retrieved from the Memo space. The worker uses its part-
Number to determine which entry is to be retrieved. Now, the miracle of modern science
occurs. The object is simply told to compute its inner product, and the result is stored in
the Memo space under the name “partial” + partNumber. Thus, the inner product for the
VectorPair contained in pair0 will be stored in partial0, pair1 in partial1,
and so on. The mergeResults() code shows how the final result ultimtely is com-
puted:

 public static double mergeResults(MemoClient memo, int
totalParts) {
 try {
 double result = 0.0;
 for (int i=0; i < totalParts; i++) {
 Double partialResult;
 partialResult = (Double) memo.get(“partial” + i);
 result += partialResult.doubleValue();
 }
 return result;
 } catch(Exception e) {
 System.out.println(e);
 e.printStackTrace();
 return 0.0;
 }
 }
}

Merging results together is actually very straightforward. A loop is established to get()
the entries out of the Memo space. Recalling the original SharedTableOfQueues
implementation, we see that the get() operation will block until the value actually
becomes available—only this time the operation is working in a networked context.
Although this step is sequential, everything leading up to this step was concurrent (and, in
fact, parallel, if run on the network or a multiprocessor system). The result is returned and
can be printed in the worker numbered zero.

coordination.fm Page 384 Thursday, July 13, 2000 10:40 PM

12 • Coordination 385

The VectorPair class is used to create the basic unit of work. This code is shown next.
The VectorPair object itself must be Serializable, since it will be transmitted
over the network using object serialization. The VectorPair object contains a package
of work, which is two arrays—v and w—both with a common dimension and correspond-
ing to a part number. Strictly speaking, the part number instance variable (partNumber)
appears here only for the purpose of debugging via the toString() method.

The nested VectorPair class is as follows:
 public static class VectorPair implements Serializable {
 int partNumber;
 int dimension;
 private double[] v;
 private double[] w;

 public VectorPair(int partNumber, int dimension) {
 this.partNumber = partNumber;
 this.dimension = dimension;
 v = new double[dimension];
 w = new double[dimension];

 for (int i=0; i < dimension; i++) {
 v[i] = Math.random() * 10.0;
 w[i] = Math.random() * 10.0;
 }
 }

 public Double innerProduct() {
 double result = 0.0;
 for (int i=0; i < dimension; i++)
 result += v[i] * w[i];
 return new Double(result);
 }

 public String toString() {
 int i;
 String result;

 result = “VectorPair: “ + partNumber + “ v: “;
 for (i=0; i < dimension; i++)
 result += “ “ + v[i];
 result = “ w: “;
 for (i=0; i < dimension; i++)
 result += “ “ + w[i];
 return result;
 }
 }

coordination.fm Page 385 Thursday, July 13, 2000 10:40 PM

Index

409

Thread, 19–41, 21–22
advantages, 197
chores, 174
kernel level vs. user-level, 36–

37
managing, 130–131
vs. processes, 33–35
RunQueue, 198
synchronization, 74, 239–256

Thread class, 21
constructors, 37–38

Thread control, 38
Thread Date Time Server class,

337–339
Thread group, 21

TCCP, 37
Thread number, block number,

276–277
Thread package, class monitor,

92–96
Thread priorities, 47
Thread scheduling, 22
Thread skeleton, 21

Runnable Skeleton, 25–26
Thread start method

Warshall’s algorithm, 391
Thread subclass, creating, 22
Thread synchronization, TS, 39–

40
Throttling, parallelism problems,

11
Throws interrupt exception object,

69
Time, instant vs. period, 32
Tokenizer, splitter, 326
Tokens, 4–5

splitter, 326
string, 327

To string method, 336
vector pair, 382–384

Total parts, memo main method,
380

Translate reader, 292, 293
Java example, 294–295

Translate writer, 292, 296
Java example, 297–298

Transport, 308
Trapezoidal integration, 384–388
Trapezoidal numeric integration

example, 125
Tr (translate), 291

stream constructing, 292
utility, 291

Try catch block, 330, 338
Tuple concept, 370
Type, message class, 342

U

UMA machines, 3–4
Unbind, callable, 363
UNICODE, reader and writer

classes, 290
Uniform Memory Access

machines, 3–4
Unix, 291
Unix collection, TCP/IP services,

309–310
Unix network programming, 308
Unix processes, 35–37
Unlock method, defined, 68
Unmarshalling, call message, 362–

363
Unpack, message constructors,

343
Unreliable datagram protocol

(UDP), 309
Upper bound, 7
Up semaphore, 73
User-level

vs. kernel-level threads, 36–37

V

Vadd class, 212
Value

future, 97
Variant, Warshall’s algorithm, 224
Vector, 327

addition, examples, 209–218
cloning, 327
inner product, memo code

example, 377–384
method, 29

Vector pair class, 379, 382–384
create work, 381
memo space, 381–382

VMpy class, 378–384
code, 378

VMpy code, running, 384
VNC, 332
Void await termination, 148
Void enqueue buffer method, 65
Void put message method, 343
Void run, 24
Void run delayed, 142, 148
Void set data, 142
Void signal, 142
Void termination, 148
Void write, 296
Von Neumann machine, 2, 4

W

WaitCond field, semaphore, 105
Waiting field, await increments,

106
Waiting thread, 136
Wait method, terminated, 57
Wait Time

adjusting, 132–133
thread, 131
trapezoidal numeric

integration example,
132–133

Wake up, 136
Warshall C1

Warshall’s algorithm, 224–227
Warshall C2

Warshall’s algorithm, 224,
227–231

Warshall C3
Warshall’s algorithm, 224,

231–236
Warshall’s algorithm, 388–395

chore examples, 218–236
dataflow, 271–272, 271f
example, 174–183
performance, 277f
variant, 224
version comparison, 277f

Wavefront arrays, 186f
Wavefront calculation

LCS, 186
Web browser, 20
Web page, construction, 20
Website, Java Grande Forum, 15
Windows NT Setup

out put, 332
Wrapper class, 44, 379
Write methods, 296
Writer classes, 290
Writer-preferred monitor, 111,

115–116
Writer streams, send mail method,

320–321
Writes, vs. reads, 58–59
Writing method, state of monitor,

286

X

Xeq, code, 135
Xeq threads, 130

trapezoidal numeric
integration example, 134

Y

Yield, cooperative multitasking, 40

