

90 COMPUTING IN SCIENCE & ENGINEERING

document, including the document root.
• endElement()is generated for every element in the doc-

ument, including the document root. There’s an instance
of this event for every startElement() event.

• endDocument()is generated after the root element of
the document and all its nested content has been
processed.

• characters()is generated when nested character data
is found within an element. It is usually not called for in-
significant whitespace character data.

To do anything meaningful with these events, you must
provide an event handler with code to actually do something
with the event. The NaturalXMLHandler exhibit shows
the code for handling the key events shown earlier.

Writing a SAX handler is reminiscent of the old days (late
1980s) when one of us (Thiruvahtukal) was working on a
compiler toolkit for LL-style parsing and also with the Yacc
(yet-another-compiler compiler) tool. In most such tools,
the event-handling methods we’re talking about here are
known as semantic actions, which is compiler-geek talk for
“what to do when you encounter an important syntactic
phrase.” If you’re interested, you can download the code
from http://sourceforge.net/projects/apt/ and study it. Ex-
tensive comments are provided in the downloadable version.

To write a meaningful handler, you must extend the base
class provided in the SAX framework. (In our approach, we
use the SAX 1 parser provided with the Apache Xerces
toolkit; it handles single namespace XML documents only.)
We maintain a context stack (member variable con-
textStack) to keep track of what we’re working on in
terms of the XML document. For example, when working
on a Particle nested within the InitialConditions el-
ement, it’s key to keep the current InitialConditions
instance on the stack so that the current Particle can ul-
timately link to it. (The notion of context is an old imple-
mentation trick used for compiling statically typed pro-
gramming languages with nested scopes and building
something known as the symbol table.)

We’ll focus on startElement() and endElement()
methods. In a nutshell, startElement() takes the incom-
ing element name (elementName) and uses it to look up the
class that should be used to construct a user-defined in-
stance. It does this by consulting another data structure
within the parser handler, called the class table
(classTable). The keys of this table are element names,
and the values are class descriptors. At the risk of peeping
ahead, entries in this table are made by calling methods be-
ginning with the name register; programmers can regis-
ter arbitrary classes to create the document root and appli-

S C I E N T I F I C P R O G R A M M I N G

Cafe Dubois

SCHOLARZHEIMERS

I was reviewing a paper for
publication recently and

noted that the author
seemed unaware of some
prior literature in the area.
When I make such a com-
plaint to an author, I like to
cite them the papers in ques-
tion. In this case, I didn’t re-
call precisely where I had
seen the papers, so I tried an
online search. Nothing
turned up.

Then it dawned on me:
these papers appeared circa
1990. They aren’t online, so
to an increasing portion of
the scholarly population,
they don’t exist.

If you have this problem,
which I hereby dub “schol-
arzheimers,” look for a big building on your campus that

says L-I-B-R-A-R-Y. Inside, you will find a weird, lonely nerd
called a reference librarian. (This person was just as weird
before the Internet, by the way.) Ask reference librarians

nicely for assistance, and
they will help you find
stuff from the past. The
good part is that you’ll be
practically the only per-
son who knows it. If you
watch a lot of MTV and
lose your moral compass,
you could even resubmit
these lost works to jour-
nals as your own work.
Nobody will ever know.
Just pick one with a
young editor.

The ACM Portal
That said, the situation is
a little better for pure
computer science thanks
to the ACM Portal. (Men-
tioning the ACM Portal in
an IEEE Computer Soci-

ety-cosponsored magazine is sort of like drinking Califor-

MARCH/APRIL 2004 91

cation nodes. We’ll return to this issue in the next section to
see how it all comes together. Once we know the class re-
sponsible for handling a given element (elementName), an
instance is created. The line of interest is where klass.
newInstance() appears.

The second item of business is to set the properties in the
user-defined class; we do this by using introspection to look
up the appropriate set method. (We don’t need get meth-
ods at this juncture; the parser creates a user-defined data
model from the XML document.) The framework lets the
user map attribute names differently from how they appear
in the source document. This is mostly a cosmetic issue that
lets you observe the host language’s naming conventions.
For example, Particle has an x attribute (in lower case),
but we want the property-setting method to be named
setX(). We let users suggest a mapping for the property
name. Again, we do this invocation by constructing the
method descriptor for the method we want to look up (set-
MethodName) and invoking it on the instance we previously
created (element).

The last item of business is to attempt to link the new in-
stance to whatever instance is resting atop the stack. The
very first time startElement() is called, the stack is
guaranteed to have one element: the document root. (The
code for creating this is just a special case and appears in

startDocument().) In the case of our particle.xml file,
the topmost element is an NBody object. So an instance of
NBody will be linked to the document root instance, which
is detailed in the NBodyRoot class. The way this linkage is
established is again achieved by using introspection. We
ask whatever object is atop the stack whether its class pro-
vides an add<MyType>() method. If this method is ab-
sent, an exception is thrown, and the programmer gets a
very clear indication of a problem. From an XML view-
point, steps must be taken to preserve the actual content
model in whatever mapping is performed. In the full source
code, you will be able to observe that every class has an ap-
propriate add<Type>() method (or methods) to address
nested content.

At the end of the startElement() implementation, we
push the newly created instance on the context stack. This
will let any nested content be handled recursively.

The endElement() implementation is straightforward;
we did the hard work in the startElement() method. All
the endElement() method needs to do is to remove the in-
stance resting atop the stack because this instance will have
been linked as contained content to another instance, which
is still being worked on.

The characters() implementation is straightforward.
We simply notify the instance atop the stack that we’ve

nia wine in France, but I’m brave.) At portal.acm.org, you
will find links to a great deal of computing literature in the
Guide to Computing Literature as well as in their own on-
line archive. You can read the Journal of the ACM all the
way back to volume 1, issue 1, 1954, including such arti-
cles as “Automatic Strain-Gage and Thermocouple Record-
ing on Punched Cards.” Using the Guide, you will not only
find a reference but see a list of the author’s other works
and the names of “Collaborative Colleagues.” This use of
hyperspace adds real value to an archive.

Reducing Computer Noise
Mrs. Dubois, family Web master, usually gets the hand-me-
down computers from the rest of us since she has lower per-
formance needs. When she inherited the Gateway (made ex-
tra loud by one of our son’s roaring video cards), she started
using my computer because hers made so much noise that
she couldn’t stand it. Sensitive violin-trained ears, you know.
Well, this was clearly a problem I needed to solve.

Riding to the rescue was endpcnoise.com. It sells comput-
ers designed to be very quiet. I got prompt delivery on a
high-performance model from Vancouver at a price not
much more than an equivalent noisy PC. The site also sells
components such as quiet power supplies, quiet case fans,
quiet hard drives, and quiet CPU fans.

In unpacking the machine, I had to open the case to re-

lieve the carefully stuffed interior of some bubble-wrap. The
CPU fan looked interesting: apparently it’s bigger and slower
than normal. The case is bigger than normal (but not alarm-
ingly so), and the wires are neatly organized so as to mini-
mize noise when the fan blows over them.

I found another company that specializes in quiet compo-
nents, called QuietPC. It operates in a variety of countries;
the US outlet is quietpcusa.com. I did not see any assembled
computers for sale, though.

Mrs. Dubois’ new computer really is quiet, all the way
down to the keyboard. When idle, you can tell it’s turned on
if the room is quiet, but even then, you have to listen. It’s
amazing how much nicer this makes computing. I think
there’s an endpcnoise computer in my future, too.

Welcome to George K. Thiruvathukal
These last two issues you’ve gotten to know Professor
George K. Thiruvathukal. We’re glad to announce that he
will be joining me as co-editor of the Scientific Programming
department. By the way, unlike mine, his name is pro-
nounced just as it is spelled; you just have to keep on truck-
ing through those syllables. He will take his turn cooking in
the Cafe, bringing his own computer-science-flavored cui-
sine to the menu. As always, our intent is to bring you infor-
mation that you can use. We encourage you to write for us;
just contact either one of us to discuss your ideas.

92 COMPUTING IN SCIENCE & ENGINEERING

found some character data. More often than not, this char-
acter data is kept separately from other nested content (such
as nested elements). However, in applications where it re-
ally matters, such as text processors, the nested character
data could be maintained in a list of nested content instances
and string data.

Putting It All Together
Visualizing this approach might be hard, but what makes it
work for scientific programming is its ability to integrate ex-
isting codes with XML. By merely implementing straight-
forward interfaces, we can turn any class into an XML-ca-
pable class. There is no need to rewrite trees, and the
number of methods the user must learn to write is minimal.

The main() method code in class NBodyRoot shows
how to put an application together. Essentially, the user con-
structs a NaturalXMLParser instance. The code for this
class attaches the handler (NaturalXMLHandler) code to
do the dirty work of implementing the key parser event in-
terface methods. Using the registerElement-

ClassMapping(String,Class) method, each XML el-

ement is registered with the class that will be instantiated
when the element is seen. The registerElement-
AttributeMapping() method allows attributes to be
mapped nicely to the host language (as described). The
setDocumentRoot() class lets users provide a class for the
document root. Essentially, this framework lets a user make
simple modifications to existing classes and then use the
NaturalXMLParser to automatically instantiate the classes
to create a heterogeneous object tree.

Getting a class descriptor is easy for users. In Java, for ex-
ample, given a declared and visible name such as the class
names in our application, you simply use ClassName.
class to get its descriptor.

The main() method concludes with a demonstration
of how to generate XML from the data model after the
simulation is completed. Because each application class
implements the ContainedContent interface, we can
use a general-purpose code generator (available through
the parser instance’s toXML() method) to emit code from
the user’s data model. Please feel free to download the
code and observe how fully compatible the output XML
is with the input XML. This example SAX parser shows
how to create a full persistence framework for arbitrary
application classes.

I n a future article, we’ll present an extension of our frame-
work in which existing user-defined classes can be used,

without modification, as application classes in an internal ob-
ject tree. This gives us more flexibility because we won’t even
need access to the sources of our application classes.

George K. Thiruvathukal is a visiting associate professor of computer

science at Loyola University Chicago. He is also president and CEO of

Nimkathana Corporation, which does research and development in high-

performance cluster computing, data mining, handheld/embedded soft-

ware, and distributed systems. He wrote two books with Prentice Hall

covering concurrent, parallel, distributed programming patterns and

techniques in Java and Web programming in Python. Contact him at

gkt@nimkathana.com.

Konstantin Läufer is an associate professor of computer science at Loy-

ola University Chicago. He is also director of architecture and application

services at Nimkathana Corporation. His research interests are in pro-

gramming languages, software architecture and frameworks, concurrent

and distributed systems, and mobile computing. He received his PhD in

computer science from the Courant Institute at New York University.

Contact him through www.cs.luc.edu/~laufer.

S C I E N T I F I C P R O G R A M M I N G

25%

N
o

t
 a

 m
e

m
b

e
r

?

J
o

i
n

 o
n

l
i

n
e

 t
o

d
a

y
!

save

on all

conferences

sponsored

by the

IEEE

Computer Society

I E E E

C o m p u t e r

S o c i e t y

m e m b e r s

www.computer.org/join

