

Fig. 1. Example of UML profiles comparison

classes with same name, however one is abstract and

the other is concrete. While the pair of classes may

still be considered a match, there is a conformance

mismatch between them.

III. STRATEGY-BASED MODEL COMPARISON

Having explained a motivation example and defined

the challenges of model comparison we present, in this

section, a flexible model comparison approach based

on match strategies. We specified three strategies (i) de-
fault, (ii) partial and (iii) complete match strategy; how-

ever, new strategies may be created and inserted in our

approach as well. We also define a match operator that is

responsible for putting the strategies in practice together.

From input models and the match strategy specification,

the match operator verifies the equivalence degree among

the input model elements and according to a threshold
specifies the match models.

A. The Match Operator

The match operator is a heuristic and its goal is to find

correspondences among model elements founded in static

matching and to implement the match strategies. The

static matching uses synonym dictionary, model signature
and typographic similarity among input model elements

in order to define the equivalence degree (S).

With a synonym dictionary it is possible to make a

mapping among the domain concepts that have the same

semantic values. The synonym dictionary paves the way

to the domain specialists to apply their domain expertise

in the matching process, once they have defined what

concepts are synonyms. Hence, this fact improves the

result of the comparison. We denote by D(r,m) →[0,1]

the degree of similarity between receiving (r) and merged

(m) model elements, it returns 0 whether r and m are

synonym, otherwise it returns 1. D is calculated for

every possible pair of (r,m). Initially, every pair (r,m)

of input model elements are assumed to be not a syn-

onym, then D(r,m) = 0 for every pair of (r,m). For in-

stance, according to synonym dictionary (see Table I) the

stereotypes Tree.Leaf and Topology.EndNode, depicted

in Figure 1(a), represent the same concepts, therefore

D(Leaf,EndNode) = 1.

The goal of typographic similarity is to determi-

nate T (r,m)→ [0..1] to every possible pairs of receiving

(r) and merged (m) model elements. The N-gram algo-

rithm [8] is applied to assign a similarity value in [0..1]

to every possible pairs of (r,m). These pairs are defined

by cartesian product of (R×M), where R and M are the

set of receiving and merged model elements, respectively.

The result of this is the matrix shown in Figure 2. This

algorithm yields a similarity degree to a pair of strings

based on counting the number of their identical substrings

of length N (we use N = 2).

The signature is defined in terms of model element

syntactic properties, where a syntactic property of a model

element defines its structure. The signature is a collection

of values for a subset of syntactic properties in a model

element’s metamodel class. For example, isAbstract is

a syntactic property defined in the metamodel class

called Class. If an instance of a Class is an abstract class

then isAbstract = true for the class, otherwise the instance

is a concrete class, isAbstract = false. The set of syntactic

properties used to determine a profile element’s signature

is called signature type, as defined in [15]. A signature

that consists of all syntactic properties associated with a

model element is called complete signature type, based on

a range of syntactic properties is called partial signature
type and the signature only based on name is called de-
fault signature type.

The signature is structured in comparison levels orga-

nized hierarchically. For instance, in Figure 1, a possible

definition of levels for the stereotype Tree.Node would

be: Tree.Node (name) (level 2), with Tree.Node.name
and Tree.Node.value (tagged values) (level 1). Every

profile element type has one signature which is defined

for it.

TABLE I

EXAMPLE OF SYNONYM DICTIONARY

Name Synonym
Leaf EndNode, FinalNode
Edge Border, Limit, Margin
Search Research, Searching, Query

The similarity degree based on signature M between

receiving (r) and merged (m) model element M(r,m) is

defined by computing the weighted average between the

arithmetic average of the levels (see Equation 1):

914

M =

n∑
i=1

pi ·

⎡
⎣ k∑

j=1

ϕi,j

k

⎤
⎦

n∑
i=1

pi

→ [0..1] (1)

• n is the number of levels employed to compare the

elements, where n ≥ 1 and n ∈ N∗
+.

• pi represents the weight, being pi = i, where i ≥ 1

and i ∈ N∗
+; k expresses the number of elements in

each level, where k ≥ 1 and k ∈ N∗
+ (i.e. Tree.Node

has two properties, as these properties represent a

level, so k = 2);

• ϕi,j (i and j represent the level and item of model

elements that are being compared, respectively) is

used to denote if an item of receiving model element

(i.g., name:Strig in Tree.Node) is equivalent to an-

other item of merged model element. It is a boolean

variable and we use the match rules (described as

follows) in order to assign value to it. The match

rules compare items of model elements, so it returns

1 if the rule is satisfied, otherwise it returns 0. For

instance, when we compare the Tree.Root and Topol-
ogy.MainNode stereotypes, ϕ2,1 = 0, applying the

match rule MR1, and ϕ1,1 = 1, applying the match

rule MR3.

We denote by S the degree of similarity between

receiving (r) and merged (m) model elements. To define

the similarity degree it is necessary to combine the partial

similarity degrees. To do this, it is calculated the average

of D, T , and M, as showed in Equation 2. If D = 1, then

T also assumes value 1 and contrariwise.

S =
(D + T + M)

D + 2
→ [0..1] (2)

Based on the Equation 2, we compute the similarity

degree of every Tree elements in related to Topology ele-

ments. The Figure 2 shows the match results. To produce

a correspondence relation between the two models, we set

a threshold (t = 0.7). So, pairs of model elements with

similarity degree above threshold are considered equiva-

lent. In short, if S(r,m)> t, then r and m are equivalent.
In Figure 2, we point out the similarity degree above

threshold and define the profile elements are equiva-

lent, as follows: (Tree.Node, Topology.Node), (Tree.Edge,

Topology.Edge), (Tree.Leaf, Topology.EndNode) and

(Tree.StateKind, Topology.StateKind)

Fig. 2. Similarity degree between profile elements

B. Match rules

In order to check if two input model element are

equivalent, we defined match rules. The match operator

is responsible to execute these match rules and, according

to the resulting of this execution, it defines consequently

the value of ϕi,j , which was specified earlier. For every

model element and item of model element are necessary a

match rule to check if they are equivalent. This checking

is based on their signature. If a match rule fails, then the

models are not equivalent (ϕi,j = 0). Otherwise, models

are equivalent (ϕi,j = 1). The match rules verify whether

the input model element properties have the same values,

and for each match strategy is defined a set of match rule

according to respective signature type of the strategy.

There are three kinds of match rules: (i) default match
rules are a set of rules that compare models based on only

their name, using the default signature type; (ii) partial
match rules are also a set of rules that compare models

based on a number of syntactic properties of the models,

using the partial signature type; (iii) complete match rules
are also a set of rules that compare models based on

their syntactic properties, using the complete signature

type. Thus, the match operator makes use of these rules

to implement the default, partial and complete match

strategies. For example, the match operator makes use

of the default match strategy (hence using default match

rules) to produce the similarity table depicted in Figure 2.

Now, we present a short description of the default

match rules used in the motivation example, as follows:

MR1. Stereotype match rule:
MatchStereotype(Stereotype rcv, Stereotype mrgd) →
rcv.name = mrgd.name AND

MatchAttribute(rcv, mrgd) AND

MatchOperation(rcv, mrgd)

MR2. Association match rule:
MatchAssociation(Association rcv, Association mrgd) →
(rcv.name = mrgd.name) AND (rcv.memberEnds =

mrgd.memberEnds)

MR3. Attribute match rule:
MatchAttribute(Stereotype rcv, Stereotype mrgd) →
(rcv.ownedAttribute.name = mrgd.ownedAttribute.name)

AND (rcv.ownedAttribute.TypedElement = mrgd.

ownedAttribute.TypedElement)

MR4. Operation match rule:
MatchOperation(Stereotype rcv, Stereotype mrgd) →
(rcv.

ownedOperation.name = mrgd.ownedOperation.name)

AND (rcv.ownedOperation.ownedParameter.length =

mrgd.ownedOperation.ownedParameter.length) AND

(∀x(rcv.ownedOperation.ownedParameter[x] =

mrgd.ownedOperation.ownedParameter[x])

MR5. Enumeration match rule:
MatchEnumeration(Enumeration rcv,

Enumeration mrgd) → rcv.name = mrgd.name AND

MatchEnumerationLiteral(Enumeration rcv,

Enumeration mrgd)

915

MR6. Enumeration Literal match rule:
MatchEnumerationLiteral(Enumeration rcv,

Enumeration mrgd) → ∀x(rcv.ownedLiteral.name[x] =

mrgd.ownedOperation.name[x])

IV. A GUIDANCE FOR MODEL COMPARISON

There is little agreement on requirements, activities and

steps that should be followed in order to accomplish the

model comparison, and even less on good practices to

avoid errors during matching. Several works (e.g., see [7],

[11]) have been proposed to tackle the problems found

in model comparison, but none of them, as yet, was

defined as standard. In [14], the UML built-in model

comparison technique does not present a task flow to help

the comparison specification of UML models, does not

present a good documentation, and does not define how

model comparison should be performed.

We previously identified and delegated activities to the

match operator. We aim to successfully order and provide

a flow of how such activities are accomplished. Such

flow can be used as a guidance to compare models,

and it aims to represent good practices and become as

comprehensive as possible the match operator role in the

model comparison process.

The guidance is organized in two phases: (1) initial
and (2) comparison phase. The initial phase is started up

when the matching operator receives the input models.

The match operator analyzes the models in order to

know each type (i.e. Stereotype, Class, Association, etc).

Such models are separated and grouped according to

their types. For example, Stereotypes (Tree.Node and

Topology.Node) and Association (Tree.Edge and Topol-

ogy.Edge) are identified and grouped according to their

types.

The goal of the comparison phase is to define what

input model elements are equivalent. It is initially realized

as an analysis of the input models and a signature is

defined for every model element type. The next step is

to specify the match strategy that determines how the

comparison will be accomplished. The match operator

defines the similarity degree (S) for every receiving and

merged model element, and based on a threshold (t)
finally it determines model elements are equivalent. The

phase is finished as soon as the matching models, no-

matching models and matching description are specified.

The next step is to merge the models, however this activity

is not the focus of this paper.

V. RELATED WORK

The model comparison is applied in different domains

and contexts, and plays a central role in numerous appli-

cations, such as model composition, schema integration,

schema evolution and migration, merging of source code,

application evolution, database integration, differences be-

tween XML documents, and differences between versions

of UML diagrams. Thus, previous research works have

proposed many techniques to tackle the inherent problems

related to matching, and achieved an automation degree of

the match operation for specific application domains. We

Fig. 3. A guidance for model comparison

give an overview on other relevant approaches related to

our goals of putting flexibility into the model comparison

process and analyze others that make use of model

comparison to merge models. To do this, the main focus of

each approach is summarized briefly, followed by pointing

out similarities and differences to our own approach (see

Figure 4).

Model Composition Semantics. S. Clarke [1] intro-

duces composition semantics for UML class diagrams.

The approach defines a new design construct, called com-
position relationship that supports the specification of how

design models should be composed. With this composition
relationship it is possible to: (i) identify and specify

overlapping and non-overlapping concepts; (ii) specify

how models should be integrated, and how conflicts in

equivalent elements are reconciled. The identification of

the overlapping parts is based on the name of the input

models; it is a weakness of the approach.

Model Composition Directives. Reddy et al. [15]

present a model composition technique relies on signature

matching, in which model elements are merged if their

signatures are correspondent. However, the match opera-

tor, in our work, makes use of a static matching approach

based on synonym dictionary, typographic similarity and

model signature in order to define the degree of similarity

between two models elements.

Package Merge. It is the composition mechanism of

the UML [14] and is defined by match rules, constraints
and transformation (the merge rules). The major appli-

cation is in the implementation of the UML compliance

levels. In principle, their match rules are similar to match
used by our match operator. However, its match rules

916

are expressed in natural language and the match process

consider only the name of the models. Moreover, the

definition of Package Merge is incomplete, ambiguous

and inconsistent.

Epsilon Merging Language. EML [6] is a metamodel

agnostic language for expressing model composition. It

includes a model comparison and model transformation

language as subsets. The model comparison is only based

on syntactic criterion. However, the match, in our ap-

proach, is founded in synonym dictionary, typographic

similarity, syntactic properties and match strategy.

Difference between Models. It presents an approach

of the how to detect and visualize differences between

versions of UML documents such as class or object

diagrams. It produces a unified document which contains

the common and specific parts of two base documents,

where the specific parts are highlighted [11]. While our

approach tackles a range of very difficult problems related

to dealing with comparison of semantics values in a flexi-

ble manner, it is primarily concerned with the comparison

and manipulation of models from the same domain and

with equal semantic values; without any flexibility during

the comparison.

Fig. 4. Comparison of related approaches

VI. CONCLUSIONS AND FUTURE WORK

In this paper we discussed the importance of model

comparison for the task of model composition, its prob-

lems and challenges involved in its implementation. Our

approach provides a flexible form of realizing the model

comparison founded on match strategies by defining the

match operator and by specifying its responsibility. More-

over, we consider that the range of different forms for

matching models improves and assures a better perfor-

mance to the comparison process and the use of guidance

in order to provide a clear and easy manner to perform

the comparison helps its improvement and evolution.

The problems and challenges outlined throughout the

paper should encourage researchers to cope with the

ever-present problem of matching models so that new

generation of the application can enjoy the use of better

techniques. Our approach has some limitations that should

be investigated further. When models are defined, it is

possible to associate them semantics constraints. These

constraints should be considered and respected when it is

necessary to perform the composition so that the specified

semantic is not disrespected. Thus, our approach is not

able, as yet, to compare these constraints. We claim

to enhance the functionality of the match operator by

creating new match strategies and improving the match

rules. Another extension of our approach would be the

use of ontology to improve the handle of the models’

semantic values.

Even through our approach has been implemented and

integrated to a profile composition mechanism demon-

strating feasibility [12], empirical studies are necessary

to validate the approach in real world design settings

of model comparison and verify its performance and

applicability in different application domains. Finally, we

observed improvement in model comparison is absolutely

necessary to the model engineering evolution and to allow

model engineering to become an industrial reality.

REFERENCES

[1] S. Clarke, “Composition of Object-Oriented Software Design
Models,” Ph.D. dissertation, School of Computer Applications,
Dublin City University, Dublin, Irland, January 2001.

[2] L. Fernndez and A. Moreno, “An Introduction to UML Profiles,”
in The European Journal for the Informatics Professional, vol. 5,
no. 2, April 2004, pp. 6–13.

[3] R. France, S. Ghosh, and T. Dinh Trong, “Model Driven Devel-
opment Using UML 2.0: Promises and Pitfalls,” IEEE Computer
Society, vol. 39, no. 2, pp. 59–66, February 2006.

[4] R. France and B. Rumpe, “Model-Driven Development of Com-
plex Software: A Research Roadmap,” in Future of Software En-
gineering (FOSE’07) co-located with ICSE’07, Minnesota, EUA,
May 2007, pp. 37–54.

[5] D. Jackson, “Alloy: a Lightweight Object Modelling Notation,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 11, no. 2, pp. 256–290, 2002.

[6] D. Kolovos, “Epsilon Merging Language Project Page,”
http://www.eclipse.org/gmt/epsilon/.

[7] D. Kolovos, R. Paige, and F. Polack, “Model Comparison: a
Foundation for Model Composition and Model Transformation
Testing,” in International Workshop on Global Integrated Model
Management. New York, NY, USA: ACM Press, 2006, pp. 13–20.

[8] C. Manning and H. Shütze, Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

[9] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and Merging of Statecharts Specifications,” in ICSE’07,
Minnesota, EUA, May 2007, pp. 54–64.

[10] Object Management Group, MDA Guide Version 1.0.1, 2003,
http://www.omg.org/docs/omg/ 03-06-01.pdf.

[11] D. Ohst, M. Welle, and U. Kelter, “Differences between Versions
of UML Diagrams,” in 9th European Software Engineering Con-
ference. ACM Press, 2003, pp. 227–236.

[12] K. Oliveira, “Composition of UML Profiles,” Master’s thesis,
Informatics Faculty, Pontifical Catholic University of Rio Grande
do Sul, Porto Alegre, Brazil, February 2008.

[13] K. Oliveira and T. Oliveira, “A Guidance for Model Composition,”
in International Conference on Software Engineering Advances
(ICSEA’07), 2007, pp. 27–32, IEEE Computer Society.

[14] OMG, Unified Modeling Language: Infrastructure version 2.1,
Object Management Group, February 2007.

[15] Y. Reddy, R. France, G. Straw, N. M. J. Bieman, E. Song, and
G. Georg, “Directives for Composing Aspect-Oriented Design
Class Models,” Transactions of Aspect-Oriented Software Devel-
opment, vol. 1, no. 1, pp. 75–105, 2006.

[16] S. Sendall and W. Kozaczynski, “Model Transformation: The
Heart and Soul of Model-Driven Software Development,” IEEE
Software, vol. 20, no. 5, pp. 42–45, 2003.

917

�
Abstract— Nowadays, measurement and assessment of

artifacts within the area of software development are of high
concern for industrial organizations as well as for scientific
institutions. Ontologies are a fundamental concept of the
Semantic Web as envisioned by Tim Berners-Lee. Together with
an explicit representation of the semantics of data for machine-
accessibility such domain theories are the basis for intelligent
next generation applications for the web and other areas of
interest.

The balance of ontology’s is on higher interest because the
usability and convertibility of ontologies is strongly related to the
manner how the elements are arranged. This paper takes into
account existing metrics and tries to present new ideas, as well.

At first this paper contains a brief description and
categorization of existing ontology metrics with a focus on
applicability regarding the balance of ontology’s taking into
account structure and knowledge related aspects. Therefore a
Goal-Question-Metric-based procedure was used. In a second
step initial ideas for additional metrics are identified and
enriched with certain presented formulas. A third step expresses
different approaches for further research work: gravity-related
and weighted-graphs-based approaches towards metrics for
ontology balance. The paper’s conclusion presents certain use
cases for the application of balanced ontologies in the area of e-
learning systems.

Index Terms—Balance, Classification, Metric, Ontology

I. INTRODUCTION

HE importance of measuring artifacts emerging during the
software development process is beyond controversy not

only for economic purposes.
Ontologies are a fundamental concept of the Semantic Web

envisioned by Tim Berners-Lee [1]. Together with explicit
representation of the semantics of data for machine-
accessibility, such domain theories are the basis for intelligent
next generation applications for the web and other areas of
interest [2] with a special focus on knowledge sharing and
reuse. Ontologies are also basis for interaction and work of
different agents or applications [3]. Top-level application

Manuscript received March 1, 2008.
S. Mencke is with the Otto-von-Guericke University of Magdeburg, 39106

Magdeburg, Germany (corresponding author to provide phone: +49-(0)391-
67-12705; fax: +49-(0)391-67-12810; e-mail: mencke@ ivs.cs.uni-
magdeburg.de).

M. Kunz is with the Otto-von-Guericke University of Magdeburg, 39106
Magdeburg, Germany (e-mail: makunz@ ivs.cs.uni-magdeburg.de).

R. R. Dumke is with the Otto-von-Guericke University of Magdeburg,
39106 Magdeburg, Germany (e-mail: dumke@ ivs.cs.uni-magdeburg.de).

areas identified by [4] are collaboration, interoperation,
education and modeling.

Ontologies can be defined as a specification of a
conceptualization [5], or in other words as the formal
representation of an abstract view of the world. They include a
vocabulary, instances, taxonomy, relations and axioms about a
certain domain.

A vocabulary defines terms with unambiguous meanings.
Furthermore, logical statements for the description of terms
and rules for their combination and relation are provided. A
taxonomy is part of the ontology concept for a hierarchical
classification in a machine-processable form.
Individuals/instances represent the objects of the ontology and
thereby the available knowledge, while classes/concepts
describe abstract sets of individuals. Attributes can be
assigned to instances for description. They have a name and
value. The last key concept of ontologies is the relation. It can
be described by using attributes and assigning another
individual as a value. Common relation types are the is-a
relation (subsumption relation) and the part-of relation
(meronymy relation). The possibility to define special domain
specific relations is a considerable additional value of the
concept of an ontology. Axioms are always true and represent
knowledge that is not inferable from other individuals.

It is possible to distinguish ontologies in two broad
categories: lightweight and heavyweight ontologies. A
lightweight ontology is described by individuals, classes,
attributes, relations and axioms, meanwhile heavyweight
ontologies are an extension of lightweight ones by the
additional usage of axioms for a more detailed domain
description.

There already exist many ontologies. Some are available via
libraries like the DAML ontology library [6] and the
SchemaWeb library [7].

After this short introduction in the field of ontologies, the
authors analyze the structure of ontologies to map existing
software metrics for their applicability in this field of research
in section II following a GQM approach. Furthermore,
existing metrics are classified. Section III dedicated to a
special field of ontology metrics which the authors found
rarely researched so far – the balance of ontologies. This
paper ends with some conclusions and remarks about future
work in section 4.

II. CLASSIFICATION OF EXISTING ONTOLOGY METRICS

For the purpose of measuring the Goal Question Metric
(GQM) approach [8] helps in discovering adequate

Towards Metrics for Ontology Balance
Steffen Mencke, Martin Kunz, and Reiner R. Dumke

T

918

measurement attempts and goals. Initially, it requires the
definition of precise goals to form the foundation for the
nomination of questions suitable for discussing issues from
different viewpoints. Finally, metrics qualified for answering
these questions become apparent. Afterwards a tailored
measurement as well as its evaluation concerning goal
attainment is possible.

The quantification of metrics attributes is separated into two
different areas being divided into four major scopes. These
areas are scheme-related and content-related, respectively.

At first it is analyzed which metrics are used to measure the
content of ontologies. One can identify two major goals in this
area: the granularity of the enclosed content and the coverage
of the content (see figure 1).

To achieve these goals the mentioned GQM approach is
used to identified the content granularity and content coverage
metrics as shown in table I and table II. In the second area (the
structures of ontologies) two goals were identified as well.

An aspect which is well described by existing metrics is the
structure of ontology and identified major scopes are the level
of detail and cohesion. Especially a scheme-based level of
detail is important to evaluate ontology because it is

fundamental to achieve content granularity (see table III).
Having introduced this concept as an indicator for information
distribution, another one is needed to describe coherence of
distinct classes. It quantifies relation-based information in
ontology. Chosen metrics are presented in table IV.

It is possible to evaluate the structure of ontologies taking
into account these two goals. Other approaches like scheme
completeness and scheme granularity are not useful because
of different reasons. So scheme completeness, when creating a
completely new ontology, is a semantic question which can
not be answered by using metrics. One can target this question
by empirical analyses in ontology usage by taking into
account other domain related ontologies. The question
whether an ontology is complete or not can not be finally
 answered by using the ontology itself. The analysis in this
direction depends very much on a subjective point of view.

TABLE I
CHOSEN CONTENT GRANULARITY RELATED METRICS

Name of Metric Formula Description

Average
Population
(Pop) [9]

CIPop � , with I as

the number of instances in
the knowledge base and
C as the number of

classes defined in the
ontology.

This metric may serve
as an indication of the
number of instances
compared to the number
of classes.

Cohesion
(COH) [9]

|| SCCCOH � as the
number of separate
connected components

This indicates what
areas need more
instances in order to
enable instances to be
more closely connected.

Connectivity
(Cn) [9]

� � � �ICIIIPICn ijjij ��� ,,

as the number of instances
of other classes that are
connected to instances of
that class � �jI .

It is an indication of the
number of relationships
instances of each class
to other instances.

TABLE II
CHOSEN CONTENT COVERAGE RELATED METRICS

Name of
Metric Formula Description

Class
Richness
(CR) [9]

CCCR '� , with 'C as the number of

classes used in the base and C as the

number of classes defined in the ontology.

Describes how
instances are
distributed
across classes.

Density
measure
(DEM)
[10]

PwIwCw

CwCw
n

DEM

iiSi

SupiSub

n

i
i

		

		�

�1

1
,

with SubC as the number of a class’

subclasses, SupC as the number of its

superclasses, SC as the number of its
siblings, I as the number of its instances,
P as the number of its relations, and iw

as a weight factor.

This metric
indicates how
well a given
concept is
defined in the
ontology.

Relation-
ship
Richness
(RRC)
[9]

� � � � � �jiiijiC CCPICIIIPRR ,,, �� ,
with � �� �ji IIP , as the number of

relationships that are being used by
instances iI that belong to iC , and

� �� �ji CCP , as the number of relationships

that are defined for iC at the schema level.

Identifies how
well the
extraction
process per-
formed in the
utilization of
information is
defined at the
schema level.

Impor-
tance
(IMP) [9]

� � IICIMP i� , with � �ICi as the

number of instances that belong to the
subtree rooted at iC in the knowledge

base, and I as the number of instances in

the knowledge base.

It is not an
exact measure,
but it can give
a clear idea on
what parts of
the ontology
are considered
focal and what
parts are on the
edges.

Fullness
(F) [9]

� � � �ICICF ii
'� , with � �ICi as the

actual number of instances that belong to
the subtree rooted at iC , and � �ICi

' as the
expected number of instances that belong
to the subtree rooted at iC .

Describes how
well was the
data extracted
with respect to
the expected
number of
instances of
each class.

Ontology Metrics

Schema Related Knowledge Related

Balance

Level of Detail Granularity CoverageCohesion

Fig. 1. Genealogy of ontology metrics

919

III. METRICS FOR THE BALANCE OF ONTOLOGIES

Having presented four starting points for the evaluation of
ontologies in the following another general aspect concerning
the structure and the content of ontologies is introduced: the
balance of a distinct ontology (cp. figure 1). Existing
measures in this area (for example Average Depth, Average
Breadth) can not completely quantify ontology aspects
concerning the balance. The balance of ontology is important
because it is to be used as an indicator how good the ontology
is built up and one can identify anomalies by analyzing the
balance.

However research efforts in this area are very rare and a
complete framework for balancing ontologies is missing. In
the following initial instruments for quantifying ontologies
concerning the balance are presented.

Concerning the balance of ontologies there exist different
general aspects that can be helpful to quantify an ontology’s
balance.

� Classes:
o Equal number of subclass in equal level of

abstraction
ji C

LSub
C
LSub CC � with jinji ��� ,...,1,

o Equal number of subclass in different subtrees
i

l
i C

Sub
C

kSub CC � with nlki ,...,1,, �

� Relations:
o Equal number of relations in equal level of

abstraction
ji C

L

C

L
PP � with jinji ��� ,...,1,

o Equal number of relations in different subtrees
i

lSub

i

kSub

C
C

C
C PP � with nlki ,...,1,, �

� Attributes:
o Equal number of attributes in different concepts

in equal level of abstraction
ji C

L

C

L
AA � with jinji ��� ,...,1,

o Equal number of attributes in different subtrees
i

lSub

i

kSub

C
C

C
C AA � with nlki ,...,1,, �

� Instances:
o Equal number of instances of different concepts

in equal level of abstraction
ji C

L

C

L
II � with jinji ��� ,...,1,

o Equal number of instances in different subtrees
i

lSub

i

kSub

C
C

C
C II � with nlki ,...,1,, �

� Subtrees:
o Equal depth of each subtree

i

lSub

i

kSub

C
C

C
C DITDIT � with nlki ,...,1,, �

TABLE III
CHOSEN SCHEME-BASED LEVEL OF DETAIL RELATED METRICS

Name of Metric Formula Description

Attribute
Richness (AR)
[9][11]

CAAR � , with A as

the number of attributes of
all classes and C as the

number of classes.

This metric can indicate
the quality of ontology
design.

Centrality
Measure (CEM)
[10]

 � �

 �

�

�
��

n

i CH

CHCD

n
CEM

1

2

211

with �CH as the longest
path that contains the class
C from root of the branch
to its bottom node, and
 �CD as the length of the

path to C from the root.

For this metric it is
assumed that mid-
leveled classes tend to
be more representative
for an ontology due to
more details and
prototypical character.

Number of Leaf
Nodes (NoL)
[12]

jCNoL � , with

nj ��1 and jC leaf

class of the ontology.

A leaf class has no
semantic subclass
explicitly defined in the
ontology.

Number of Root
Classes (NoR)
[12]

jCNoR � , with

nj ��1 and jC root

class of the ontology.

A root class in an
ontology means the
class has no semantic
super class explicitly
defined in the ontology.

Average Depth
of Inheritance
Tree of Leaf
Nodes (ADIT-
LN) [12]

nDLNADIT j�� , with

nj ��1 and jD as total

number of nodes on jth

path.

This metric describes
the sum of depths of all
paths divided by the
total number of paths.

TABLE IV
CHOSEN SCHEME COHESION RELATED METRICS

Name of
Metric Formula Description

Relation-
ship
Strength
(RSSO) [13]

� �
� �

� �� �vuRSSQPRSS
QclvPclu

O ,max,
),(��

�

with: P and Q as the classes of interest

and)(Pcl ,)(Qcl as the
sets of all concepts assigned to the
classes P and Q , and

��
�

� 		
� *

maxDepth
maxDepth),(21 CCRSS .

Describes
strength of
relationship
between two
classes.

Relation-
ship
Richness
(RR) [9]

PSCPRR 	� , with P as the

number of relationships, and SC as the
number of sub-classes (= inheritance
relationships).

Describes the
diversity of
relations and
placement of
relations in the
ontology.

Inheritance
Richness
(IRC) [9]

'

1
'

),(

C

CCH

IR CC
i

C

C
i

�

� , with

),(1 i
C CCH as the number of

subclasses)(1C of a class iC , and 'C

as the number of nodes in the subtree.

Describes the
distribution of
information in
the current
class sub-tree
per class.

920

Besides these tree-based approaches a second set of
formulas is presented in the following to analyze balance
aspects of ontologies. For this purpose previous published
work about the specification of distance-based semantic
windows is used [14].
An ontology is defined as),,,(IDRCO � , where C is the set of
ontological concepts following a taxonomic structure,

ntaxtax RRR �� is the set of object properties/relations
taxonomically and non-taxonomically relating two concepts

),(jiij CCR and D is the set of datatype properties/attributes of
the ontology. I is the set of instances. An ontological
component of each of these types can be the enrichment point
for the semantic window. From this four different aspects the
dimensions of the semantic window can be derived.

� Concept view
� Datatype property view
� Object property view
� Instance view

For each of the four views, distance measures are defined
for the existing dimensions. A help function is)(i

niv Cf

describing the level of the concept according to its taxonomic
level with 0)(�root

niv Cf . Function),(ji
parent CCf delivers back

the first more abstract concept shared by iC and jC , if it

exists and is connected to them only via taxRR� .),(ji
tax CCf

and),(ji
ntax CCf determine the length of the taxonomic or

non-taxonomic path of concepts from iC to jC (the result is -
1, if there does not exist such a path).

The dimensions of the distance related to the ontology’s
concepts having a concept as the focusing point are defined in
(1) to (4). The single distance measures relate to the
abstraction dimension distance absc , to the specialization
dimension distance specc , to the sibling dimension distance

sibc and to the non-taxonomic dimension distance ntaxc . They
measure the distance between the focusing point concept

FC and another concept jC of the ontology.

)()(),(j
niv

F
niv

jF
abs CfCfCCc �� (1)

)()(),(F
niv

j
niv

jF
spec CfCfCCc �� (2)

))(()(),(, jF
parentniv

F
niv

jF
sib CCffCfCCc �� (3)

),(),(jF
ntax

jF
ntax CCfCCc � (4)

The equations above are restricted by: CCCC jiF �,, .

Equation (1) is restricted by:)()(j
niv

F
niv CfCf � and

1),(��jF
ntax CCf . Equation (2) is restricted by:

)()(j
niv

F
niv CfCf � and 1),(��jF

ntax CCf . Equation (3) is

restricted by:)()(j
niv

F
niv CfCf � and

)()),((F
niv

jF
parentniv CfCCff � .

With this set of described formulas we are able to define
first knock-out criterions for balanced ontologies:

� An ontology which contains not a single pair of leaf
nodes with no sibling distance can not be balanced

� If every subtree of the root node has a different maximal
abstraction dimension the root can not be balanced

� Two concepts having a sibling distance must have the
same specialization distance to their leafs

The presented approach is a first analysis of the targeted
problem of missing balance metrics for ontologies. The
mentioned numerous aspects need to be integrated in a set of
formulas. Due to manifold characteristics of the described
starting points, one has to do fundamental research about the
mathematical base to map the existing complexity of the
problem to certain metrics formulas. Knock-out criteria can be
a first starting point but it is not sufficient and quality models
with distinct measures are desirable.

Related research should follow e.g. the following ideas:

� Gravity-related approach:
o Identification of a center of gravity
o Measuring absC , specC , sibC and ntaxC to the

border concepts of the ontology (roots, leafs, …)
o Ontology is balanced, if ntaxsibspecabs cccc ���

o Extension towards multiple centers of gravity

� Weighted graphs approach:
o Determine a weight

iCW for every node of the
ontology’s graph representation based on
instances’ size, instances’ number, concept’s
relations and attributes, etc.

o Ontology is balanced if (a) every node iC has a
similar weight or (b) all nodes on the same
abstraction level have a similar weight.

IV. SUMMARY, CONCLUSION AND FUTURE WORK

In this paper an overview of existing metric ontology
measurement following a structured approached based on the
concept of GQM was presented. During research a lack of
metrics for balance-measuring for ontologies was observed.
To close this gap, different criteria for a balance measuring
framework were identified and future steps towards a balance-
metrics set were outlined.

A. Conclusions
Measuring just because it is possible can not be an

intention. The following ideas present some initial ideas for
ontology metrics in certain applications.

921

The area of knowledge discovery can be a major building-
block for e-learning. The creation of courses or the
measurement of learning efforts can be revised with
ontologies.

 Measurement approaches in this direction can be for
example:

(L1) The determination of the semantic similarity between
an ontology describing the domain to be learned and
an ontology created by the learner(s) during the
learning process is an approach to measure the
standard of knowledge at a discrete point in time. By
repetition the learning progress of the
person/community that built up the second ontology
can be analyzed for multipurpose reasons.

(L2) Measuring the complexity of evolving ontologies
during a learning effort or an examination can help to
identify concepts that were learned very well or were
not yet learned.

(L3) The creation of tests and exercises based on ontologies
will lead to automatic determination of the level of
difficulty, respectively of the complexity of the
question and the expected answer based on the
ontology complexity.

(L4) Identifying matching concepts in ontologies to
automatically generate courses described by
ontologies is another option.

(L5) Another usage for a similarity measure can be the
description of course content depending on a domain
ontology.

Agent technology is another very interesting application
area. The authors expect ontology metrics to be extremely
useful for several aspects, e.g.:

(A1) An agent’s functionality can be characterized by
analyzing the used communication ontology.

(A2) It becomes also possible to identify a useful
separation of functionalities and evolving
communication based on an ontology containing a
service description. Such an approach is useful to
automatically identify the mapping of functionalities to
agents as postulated in [15] and [16].

(A3) The balancing of workload becomes possible when
the work is effort-driven distributed based on an
ontology.

Another mentionable aspect is the usage of appropriate
metrics in measurement infrastructures.

(I1) Implementation of measurement services for the
presented metrics to integrate ontology measurement
into our service oriented measurement infrastructure is
interesting as previously presented in [17] and [18].

B. Future work
There are many open questions regarding ontology metrics

as for example maturity (how ready is it to use?), robustness
(how it can handle unexpected concepts), language flexibility
(how stable is language?) and domain friendliness (how easy
is to develop domain ontologies based on an upper ontology?)

[19]. In the future the authors will focus on the development
of the sketched balance metrics and their application to certain
areas.

REFERENCES

[1] T.B. Lee, J. Hendler, and O. Lassila, “The Semantic Web”, Scientific
American, 284, pp. 34-44, 2001.

[2] V. Devedzic, “Semantik Web and Education”, Springer, 2006.
[3] S. Kernchen, D. Rud, F. Zbrog, and R. Dumke, “Processing Remote

Measurement Databases by the Means of Mobile Agents”, In
Proceedings of the 3rd International Conference on Web Information
Systems and Technologies, Barcelona, Spain, March 2007.

[4] R. Fikes, “Multi-Use Ontologies”, Stanford University (February 07,
2007), http://www.ksl.stanford.edu/people/fikes/cs222/1998/Ontologies/
sld001.htm.

[5] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications”, Knowledge Acquisition, 5, pp. 199-220, 1993.

[6] DAML, “DAML Ontology Library”, http://www.daml.org/ontologies/.
[7] SchemaWeb, “SchemaWeb”, http://www.schemaweb.info/.
[8] V. Basili, and D. Weiss, “A Methodology for Collecting Valid Software

Engineering Data”, IEEE Transaction on Software Engineering, 10, pp.
728-738, 1984.

[9] S. Tartir, I.B. Arpinar, M. Moore, A.P. Sheth, and B.A. Meza, “OntoQA:
Metric-Based Ontology Quality Analysis”, In Proceedings of IEEE
ICDM 2005 Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge
Sources, 2005.

[10] H. Alani, and C. Brewster, “Ontology Ranking Based on the Analysis of
Concept Structures”, Proceedings of the 3rd International Conference on
Knowledge Capture, ACM Press, 51-58, 2005.

[11] P. Buitelaar, T. Eigner, and T. Declerck, “OntoSelect: A Dynamic
Ontology Library with Support for Ontology Selection”, Proceedings of
the Demo Session at the International Semantic Web Conference, 2004.

[12] H. Yao, A.M. Orme, and L. Etzkorn, “Cohesion Metrics for Ontology
Design and Application”, Journal of Computer Science, 1, pp. 107-113,
2005.

[13] X. Wu, L. Zhu, J. Guo, D. Zhang, and K. Lin, “Prediction of Yeast
Protein-Protein Interaction Network: Insights from the Gene Ontology
and Annotations”, Nucleic Acids Research, 34, 2137-2150, 2006.

[14] S. Mencke, Andreas Schmietendorf and R. Dumke, “Distance-Based
Semantic Windows”, submitted to 6th e-Learning Fachtagung
Informatik der Gesellschaft für Informatik (DeLFI 2008), Lübeck,
Germany, September 7-10, 2008.

[15] S. Kernchen, F. Zbrog, and R. Dumke, “ABEL-GUI: An Agent-Based
Graphical User Interface for E-Learning”, In Proceedings of the 3rd
International Conference on Web Information Systems and
Technologies, Barcelona, Spain, March 2007.

[16] S. Kernchen, and R. Dumke, “Developing Adaptive and Self-Managed
Graphical User Interfaces”, In Proceedings of the Second International
Conference on Interactive Mobile and Computer Aided Learning,
Amman, Jordan, April 2007.

[17] M. Kunz, A. Schmietendorf, R. Dumke, and C. Wille, “Towards a
Service-Oriented Measurement Infrastructure”. Proceedings of the 3rd
Software Measurement European Forum (Smef 2006), May, 10-12,
Rome, Italy, pp. 197-207, 2006.

[18] M. Kunz, A. Schmietendorf, R. Braungarten, and R. Dumke, “Service-
Oriented Adjustment of Test and Measurement Tools” (In german). In:
A. Schmietendorf and R. Dumke: Proceedings of 1. Workshop
Bewertungsaspekte serviceorientierter Architekturen (BSOA06), 24.
November, FHW Berlin, private publishing venture: Otto-von-Guericke-
University of Magdeburg, pp. 11-20, 2006.

[19] A. Terry, “SUO: Thoughts on the Ontology Evaluation Questions”,
http://grouper.ieee.org/groups/suo/email/msg12408.html.

922

Techniques for De-fragmenting Mobile Applications: A Taxonomy

Damith C. Rajapakse
School of Computing, National University of Singapore

damith@comp.nus.edu.sg

Abstract

 Fragmentation, in the context of mobile
applications, is the inability to "write once and run
anywhere". Fragmentation increases the effort
required in all aspects of application development.
This paper analyzes various aspects of fragmentation,
and presents a taxonomy of techniques used to combat
it. Our aim is to establish a set of useful terminology
for the benefit of researchers and practitioners
working in this area.

1. Introduction
Fragmentation is the term used in the industry to

describe the inability to "write once and run
anywhere", often resulting in multiple versions of an
application. More formally, we define fragmentation
as the “inability to develop an application against a
reference operating context and to achieve the intended
behavior in all operating contexts suitable for the
application”. Further, we define the operating context
(OC) for an application as the “external environment
that influences its operation”. Therefore, an OC is
defined by the hardware/software environment in the
device, the user, and the environmental constraints
introduced by various stakeholders such as the network
operator. While fragmentation can affect any type of
application, this paper focuses on the fragmentation of
mobile applications. Note that by "mobile applications"
we mean installed applications on the mobile device
and not the server-side applications such as SMS-based
applications1 or mobile web applications2.

Fragmentation is caused by the diversity of OCs
(see Figure 1 for an illustration). In Section 2, we
describe how one OC could differ from another,
resulting in fragmentation. While users, developers,
distributors, carriers and device manufacturers are all
affected by fragmentation, this paper looks at
fragmentation from the point of view of an
organization developing mobile applications. In section

1 A server-side application accessed by a mobile device,

using SMS as the mode of communication
2 An application accessed over the Internet, using a web

browser on a mobile device.

3, we describe how fragmentation affects various
aspects of mobile application development. As
fragmentation is a big problem in the industry today, a
number of techniques have emerged to combat it. We
call them de-fragmentation techniques. Section 4
presents a taxonomy of existing de-fragmentation
techniques, based on the basic approach each one uses
to tackle the problem. This taxonomy was inspired by
the work of practitioners [3] and later refined based on
further feedback from practitioners (as acknowledged
in Section 7). Where appropriate, we refer to industry
tools to illustrate each approach. Comments about
related work, conclusions, and future directions are
given at the end of the paper.

A1A1 O
C1

Diversity�in�
hardware,�software

Diversity�
in�users

Diversity�introduced�
by��other�stakeholders

Ta
rg

et
�

m
ar

ke
t

O
C2

O
Cn

Po
te

nt
ia

l�m
ar

ke
t

A2A2

AnAn

Fragmented�
application

Targeted�operating�
contexts

.........

Figure 1. Fragmentation overview

2. Causes of fragmentation
By definition, fragmentation is caused by the

diversity of operating contexts (OCs). One operating
context may differ from another for the following
reasons:
� Hardware diversity of the device, such as
differences in screen parameters (size, color depth,
orientation, aspect ratio), memory size, processing
power, input modes (keyboard, touch screen, etc.),
additional hardware (camera, voice recorder etc.),
and connectivity options (bluetooth, IR, GPRS, etc.).

923

� Software diversity, which may be a result of
platform diversity or implementation diversity:
o Platform diversity is caused by factors such
as differences in platforms/OS (Symbian, Nokia
OS, RIM OS, Android, BREW, etc.), API
standards (MIDP 1.0, MIDP 2.0, etc.),
optional/proprietary APIs, variations in accessing
hardware (e.g., full screen support), maximum
binary size allowed, etc.
o Implementation diversity is caused by
factors such as quirks/bugs in implementing
standards.

� Feature variations, such as light version vs full
version

� User-preference diversity, in aspects such as the
language, style, etc., or accessibility requirements

� Environmental diversity, such as diversity in the
deployment infrastructure (e.g., branding by carrier,
compatibility requirements of the carrier’s back-end
APIs, etc.), locale, local standards.
As we can see from the above, one OC can differ

from another due to many factors. Let us call these
factors fragmentors. i.e., a fragmentor is a factor,
diversity of which causes fragmentation. The
fragmentation of mobile applications is often referred
to as device fragmentation, because most of the
fragmentors can be traced to a particular device model.
This is a misnomer however, as factors outside the
device (e.g., branding by carrier) too can cause
fragmentation.

Since it is the diversity that drives fragmentation, a
closer look at diversity may provide us with clues as to
how to deal with fragmentation. It is our opinion that
diversity can be either essential or accidental.3

� Essential diversity is the diversity that
differentiates a product/service in some useful
manner. Such diversity is intentional and often
unavoidable. For example, users will continue to
differ in their preferred size for a device, and the
device manufacturers will continue to differentiate
the devices in terms of size.

� Accidental diversity is the diversity that - does not
serve any useful purpose, is often introduced
unintentionally, and is often avoidable. For example,
diversity due to API implementation bugs/quirks is
unintentional, avoidable, and does not serve any
useful purpose
Fragmentation is often associated with JavaME

(Java Mobile Edition) applications, but it is also
applicable to non-JavaME applications. Theoretically,
a JavaME application is able to run on any Java-
enabled mobile device. This means a JavaME

3 This classification is borrowed from Fred Brooks' seminal
book The Mythical Man-Month, which discusses “essential
difficulties” and “accidental difficulties” of software
development

application can target a much wider range of OCs as
compared to non-Java applications, exposing it to more
diversity. As non-JavaME applications (e.g., native
applications for Symbian platform) are created for a
smaller range of devices, they are exposed to less
diversity. While a JavaME application has to run on
platforms developed by many vendors, a typical non-
JavaME application will run on a platform
implemented by a single vendor or a small number of
vendors (e.g., Symbian). This means JavaME
applications have to face more implementation
diversity, as compared to non-JavaME applications.
However, developers may still have to develop a
JavaME equivalent as well, if a wider range of OCs is
to be targeted.

3. Effects of fragmentation
Fragmentation, and the subsequent de-

fragmentation, complicates all disciplines4 of a mobile
application project. Some examples are given next.
� Business modeling: Business analysts have to
determine the optimum set of OCs for the application
to target. Questions to be answered include “Is
operating context OC1 suitable for application A1?”
and “Is it worth porting A1 to OC1?”.
� Requirements management: If the interaction
between the actor and the application is OC-dependent,
it complicates the use-case specification by introducing
a vast number of exceptional/alternate flows.
� Analysis and design: The system architecture, and
the detailed design, should be able to accommodate the
OCs targeted at the time, but also any future OCs the
application will be exposed to during its lifetime.
� Implementation: Implementers need to optimize
the application to all the targeted OCs. Questions to
answer include “What do I have to do to fit application
A1 to fit operating context OC1?”, “How does OC1
differ from OC2?”, and “Which OCs can be served by
a single version of the application?”
� Testing: The application need to be tested for all
targeted OCs. It is usually not enough to test on device
emulators, as real devices on a real network sometimes
behave differently from the emulators.
� Project management: Having to accommodate
new (and unexpected) OCs in the middle of a project
complicates project scheduling.
� Configuration and change management: Having
multiple versions of an application (to suit multiple
OCs) clearly impacts this discipline. New devices
entering the market will increase the version count,
while evolution of the platform software may require
substantial changes to the existing versions.
� Environment: The software process has to be
augmented to cater for additional complications

4 disciplines as defined in the IBM Rational Unified Process

924

introduced by fragmentation. For example, additional
tools will be required to tackle various fragmentation
issues.

Aforementioned complications increase the required
effort in almost all aspects of the software life cycle,
driving up the cost, and lengthening the time-to-
market. Other side-effects are:
� It could reduce the quality of the product - The
additional complexity of maintaining a large number of
versions could increase the probability of bugs. Cost
considerations may tempt developers to release
applications that behave in sub-optimal ways for
certain OCs (E.g., an application may work well for
certain screen sizes, but may appear distorted in certain
other screen sizes).
� It could narrow the target market - Cost
considerations may force the application vendors to
target a smaller market than the actual potential market
it could target otherwise (see Figure 1).
� It hinders the growth of the mobile application
market, by acting as a barrier-to-entry for new entrants
- This is because creating a mobile application to fit a
wide variety of OCs requires a much higher effort and
a better expertise, when compared to a desktop/web
application.

4. A taxonomy of de-fragmentation techniques
One way to reduce fragmentation is by eliminating

diversity. However, only accidental diversity, which
does not serve any useful purpose, should be targeted
for elimination. Measures such as better
standardization (e.g., less optional APIs, more detailed
specifications), stricter enforcing of the standards (e.g.,
using API verification initiatives, Technology
Compatibility Kits) can help in this regard. Major
players in the mobile application industry such as
platform vendors, device manufacturers, and carriers
have a critical role to play in this front of the war
against fragmentation. One such effort in the JavaME
arena is the Mobile Service Architecture [7].

D
e

�
fr

a
g

m
e

n
t
a

t
io

n
�

t
e

c
h

n
iq

u
e

s

MANUAL�MULTI

DERIVE�MULTI

SINGLE�

ADAPT

SELECTIVE

META

GENERATE

ALL�IN�ONE

FITS�ALL

ABSTRACTION

�LAYER

AIM�LOW

DEVICE�ADAPT

SELF�ADAPT

EMBED

INJECT

Figure 2. The complete taxonomy

On the other hand, essential diversity will be much
harder, if not impossible, to avoid. The pragmatic
response here is to find ways to reverse the resulting
fragmentation. This is called de-fragmentation [3].
Note that de-fragmentation is NOT eliminating

diversity. Rather, it is the process of making the
application behave as intended on a set of diverse OCs.

In this section, we present a taxonomy of de-
fragmentation techniques, based on the basic approach
each technique uses. Figure 2 illustrates this taxonomy
in its current state. Each approach will be explained in
detail in the subsequent subsections. Note that a single
application can use a combination of de-fragmentation
techniques, using a different technique to manage each
OC-specific variation.

4.1 Th NUAL-MULTI approach e MA

A1A1

O
C1

O
C2A2A2

O
CnAnAn

	�
�� ��D�
����������
�������D��������D�����
��

Developers

Figure 3. The MANUAL-MULTI approach

The most primitive way of de-fragmenting is to
manually develop distinct versions of the application to
suit different OCs. We call this approach MANUAL-
MULTI. Figure 3 illustrates this approach, where A1,
A2, … An are different versions of the application A,
customized to fit operating contexts OC1, OC2, …
OCn respectively. These distinct versions will be
largely similar, but also different in subtle ways, as a
result of subtle variations in the OCs. Copy-paste-
modify techniques are commonly used to “port” the
application to various OCs. MANUAL-MULTI
approach results in duplication of work in many
aspects of software development (e.g., fixing the same
bug in hundreds of different versions). The following
two alternative approaches try to minimize such
duplication of efforts:

1. Derive OC-specific versions from a single code
base (we call this approach DERIVE-MULTI)

2. Use a single version to serve multiple OCs (we
call this approach SINGLE-ADAPT)

4.2 The DERIVE-MULTI approach
In the DERIVE-MULTI approach, we derive OC-

specific versions of the application from a single code
base. While this still results in multiple versions of the
application, there is only one code base to work on and
therefore, the effort required may be less than in the
MANUAL-MULTI approach. In particular, we no
longer need to manually maintain duplicate copies of
the same source.

An example tool that supports the DERIVE-MULTI
approach is the NetBeans Mobility Pack [8] (a JavaME
mobile application development environment that
comes as an extension to the popular NetBeans Java
IDE). It uses a concept called project configurations,
where a single application can have multiple project

925

configurations, one for each different versions we want
to derive.

The DERIVE-MULT approach can be further sub-
divided into three approaches: SELECTIVE, META,
and GENERATE.

A1A1

O
C1

O
C2

O
Cn

�D������D��������D���D�
�����D�
��
�����D���
D��������������
��DD

Developer

A2A2

AnAn

AA

aa bb cc

�����
����D
��D
�D�D������D�
��D����DD aa

bb

cc

OC�specific�files

common�files

OC�specific�versions

Single codebase

Build�
script

Figure 4. The SELECTIVE approach

The SELECTIVE approach (Figure 4) localizes
variations into interchangeable components (e.g.,
classes, files, etc.) and uses a build script (or a linker)
to create one version for each OC, picking out only the
components required for that particular OC. This
approach is frequently used when including images of
different resolutions to fit different screen sizes. An
example of this approach can be seen in the J2ME
Polish tool [6]. For instance, we can put an image file
in the resources/ScreenSize.240+x320+ folder, and
J2ME Polish will include this image for devices with a
screen size of at least 240x320 pixels.
The META approach uses meta-programming (and
similar code manipulation techniques) to specify how
to derive OC-specific versions of the application.
There are two ways of achieving this: the EMBED
approach and the INJECT approach.

A1A1

O
C1

O
C2

O
Cn

�D�����
����
�D�������D��������D�����
��D��D���������D������
��DD

Developer

A2A2

AnAn

AA

@A1{ xxx }
@A2{ yyy }

@An{ zzz }

Pr
ep

ro
ce

ss
or

xxx

zzz

yyy

Figure 5. The EMBED approach

The EMBED approach embeds OC-specific
variations in the source files using meta-programming
directives/tags. A preprocessor derives multiple
versions by processing these directives/tags. An
example of this approach can be seen in NetBeans
Mobility pack, which uses a concept called
preprocessor blocks to specify OC-specific code
segments. The example preprocessor block given in
Figure 6 (adapted from [8]) is used to derive two
different versions of the application, one for devices
having 128x128 screens, and one for devices having
176x182 screens.

Figure 6. A NetBeans Mobility Pack preprocessor block

//#if screen == "128x128"
 //# ballWidth = 10;
 //#elif screen == "176x182"
 //# ballWidth = 16;
//#endif

A1A1

O
C1

O
C2

O
Cn

�D�����
����
�D�������D��������D�����
��D��D�
�������D���������
�D�
��D ���DF����������D���������
��DD

Developer

A2A2

AnAn

AA

A1{ xxx }
A2{ yyy }

An{ zzz }

Pr
ep

ro
ce

ss
or

xxx

zzz

yyy

Generic�application�code

OC�specific�instructions

Figure 7. The INJECT approach

The INJECT approach requires the developer to
write the OC-specific instructions separated from the
application code. For example, Tira Jump [9] (a tool
for developing mobile applications) uses aspect-
oriented programming techniques to achieve such an
effect. It lets developers write the application code
against a reference OC and derives OC-specific
versions by “weaving” OC-specific variations into it.

A1A1

O
C1

O
C2

O
Cn

Developer

A2A2

AnAn

AA

{ }

�������
�Dautomatically ������D���D���������
�D�
�D��
 �DF�� xxx

zzz

yyy
G

en
ra

to
r/

A
ut

o�
ad

ap
te

r

Figure 8. The GENERATE approach

The GENERATE approach automatically generates
multiple versions using an intelligent generator that
knows how to adapt a generic application to suit a
specific OC. Instead of merely following instructions
supplied by the programmer (as in the META
approach), the generator uses its in-built knowledge in
the generation process, requiring less manual coding.
The feasibility of such fully automatic generation is
rather limited, and we expect such generators to be
limited to a narrow mobile application domain or a
narrow range of OCs. For example, alcheMo tool [1]
promises to automatically generate BREW format
applications from JavaME applications.

4.3 The SINGLE-ADAPT approach
The SINGLE-ADAPT approach builds a single

version of the application that can work on multiple
OCs. This approach can be further sub-divided into
two: FITS-ALL and ALL-IN-ONE.

926

The FITS-ALL approach develops a one-size-fits-all
application that sidesteps all variations between OCs.
There are two ways to accomplish this: AIM-LOW and
ABSTRACTION-LAYER.

A1A1

O
C1

O
C2

O
Cn

aa

A2A2

AnAn

AA

�����D�
��D���������D���D����D���DF��DD

Developer

bb

cc

Figure 9. The AIM-LOW approach

The AIM-LOW approach (Figure 9) uses only what
is common to all targeted OCs. For example, the UI
will be designed to fit the smallest screen size of the
targeted device range. This approach is sometimes
referred to as the “lowest common denominator”
approach.

O
C1

O
C2

O
Cn

Developer

AA

{ }

LibraryLibrary

xxxxxx yyyyyy zzzzzz

AA

{ }

Library�API����������������Library�API����������������

xxxxxx yyyyyy zzzzzz

OC2�APIOC2�API

���������
�D��D ������D�����D��DF���������D���D!��
�����D��D�D�������"D
xxxxxx yyyyyy zzzzzz

OC1�APIOC1�API

Figure 10. The ABSTRACTION-LAYER approach

The ABSTRACTION-LAYER approach (Figure
10), hides variations in the OCs behind an abstraction
layer. This abstraction layer is usually a library (third-
party or built in-house), and the application will be
developed using the API of the library. Both the library
and the application will be deployed on the mobile
device, and it is the responsibility of the library to
execute generic method calls from the application in an
OC-specific manner. TWUIK [10] (a UI library for
mobile applications) is one example tool that uses the
ABSTRACTION-LAYER approach to write a single
UIs that can adapt for multiple OCs.
The ALL-IN-ONE approach makes the software
adapt at run-time to a given OC, using either the SELF-
ADAPT approach or the DEVICE-ADAPT approach.

The SELF-ADAPT approach (Figure 11) makes the
application programmatically discover information
about the OC and adapt itself to the OC at run-time.

Developer

AA

if(A1){xxx}
if(A2){yyy}

if(An){zzz}

O
C1

O
C2

O
Cn

���D���������
�D��
 �D�
 D�
D�����D�
D���DF�DD

Figure 11. The SELF-ADAPT approach

In Figure 12 we see an example code snippet written in
SELF-ADAPT fashion. This single piece of code will
work for both screen sizes 128x128 and 176x182. The
difference between this and the EMBED example in
Figure 6 is that EMBED will include either
ballWidth=10; or ballWidth=16; (but not
both) in each OC-specific version, while SELF-
ADAPT will include all code in Figure 12, resulting in
a bigger application.

Figure 12. An example of the SELF-ADPT approach

Canvas c = new Canvas();
w = c.getWidth (); h = c.getHeight();
if(w==128 && h==128)
 ballWidth=10;
 else if(w==176 && h==182)
 ballWidth=16;

The DEVICE-ADAPT approach (Figure 13) requires
the application to be written in an abstract way, and the
device decides how to adapt it to the prevailing OC, at
run-time. This approach is commonly used when
dealing with fragmentation in the UI part of an
application, often with unsatisfactory results. In Figure
14, we see how the same calculator application appears
differently on two different phone emulators, after it
has b vice. een adapted by the de

Developer

AA

{ }

A1A1

O
C1

O
C2

A2A2

AnAn

O
Cn

������D��
 �D�
 D�
D�����D���D���������
�D�
D����D������D
xxx

zzz

yyy

Figure 13. The DEVICE-ADAPT approach

927

7. Acknowledgements
Input from the following persons helped towards
refining the material in this paper: Bhojan Anand,
Naveed Shaikh and Nguyen Thi Tuyet Nhung
(National Uni. of Singapore), Chris Abbott
(DetectRight), Himath Dissanayake (OrangeHRM Inc),
Kutila Gunasekera (Monash University), Jason Delport
(Paxmodept), Luca Passani (WURLF) Mihai Fonoage
(Florida Atlantic Uni.), Reto Senn (Bitforge), Ruchith
Gunaratne (hSenid Software Intl) and Tom Hume
(FuturePlatforms).

Figure 14. An example result from DEVICE-ADAPT

5. Related work
8. References Fragmentation is one of the most talked about topics

among practitioners (e.g., [3][4]). In academic
research, fragmentation in the Mobile-Web has
received frequent attention (e.g., [5]). Another related
area is adaptable user interfaces. For example Gojas et
al [2] describes a GENERATE type technique used to
automatically generate UIs to fit different screens. The
use of meta-programming to generate product lines is a
well known technique, which could be adapted to de-
fragment mobile applications. For example, Zhang and
Jarzabek [11] shows how to use the XVCL meta-
programming language (XVCL uses a combination of
EMBED and INJECT approaches) to de-fragment a
mobile game product line.

[1] alChemo home http://www.innaworks.com/alchemo
[2] Gajos, K, Christianson, D., Hoffmann, R., Shaked, T.,
Henning, K., Long, J. J., and Weld, D.S., “Fast And Robust
Interface Generation for Ubiquitous Applications,”.
Proceedings of the Seventh International Conference on
Ubiquitous Computing (UBICOMP'05), 2005
[3] JavaME: De-fragmentation Technical Overview and
Design Guidelines Index, available at
http://developers.sun.com/mobility/reference/techart/design_
guidelines/overview.html
[4] Lau, A., " Fragmentation effect,"
http://www.javaworld.com/javaworld/jw-05-2004/jw-0524-
fragment.html
[5] Liang, A., Guo, S., and Li, C., "Dynamic Mobile
Content Adaptation Abstracting in Device Independent Web
Engineering," Global Telecommunications Conference,
2006. (GLOBECOM '06), pp. 1 - 4

6. Conclusions and future work
In this paper, we analyzed the fragmentation

problem faced by developers of mobile applications
today. We defined the terms “operating context”- a
concept central to the way we define fragmentation.
We also explained our opinion of what it means to “de-
fragment” an application, and contrasted it with
eliminating diversity. As the major contribution of the
paper, we presented a taxonomy of de-fragmentation
techniques currently used in the industry, and used
existing industry tools to illustrate each type of
technique. Our future plans include a comprehensive
evaluation of the techniques included in the taxonomy,
to discover their strengths/weaknesses, to find
synergies among them, and look for more effective
alternatives. We shall continue to refine this taxonomy,
based on interactions with the practitioners and our
own experimentation.

[6] J2ME Polish homepage http://www.j2mepolish.org
[7] JavaME mobile Service Architecture,
http://java.sun.com/javame/technology/msa/
[8] Resolving JavaME Device Fragmentation Issues Using
NetBeans 6.0 Mobility
http://www.netbeans.org/kb/60/mobility/javame-
devicefragmentation.html
[9] Tira Jump home page http://www.tirawireless.com
[10] TWUIK homepage http://www.tricastmedia.com/twuik/
[11] Zhang, W. and Jarzabek, S. “Reuse without
Compromising Performance: Experience from RPG Software
Product Line for Mobile Devices,” 9th Int. Software Product
Line Conference, SPLC’05, September 2005, Rennes,
France, pp. 57-69

928

Identifying NFRs Conflicts Using Quality Ontologies

Abstract
Conflict identification and resolution is a key phase of

requirements engineering. It is crucial to identify conflicts at
early stages of the requirements engineering which in turns
helps in establishing a cohesive set of requirements to guide the
overall requirements engineering process. Conflicts especially
arise due to the self reinforcing or contradictory nature of some
NFRs (e.g. efficiency and usability). This paper describes how
quality ontologies can be used to support the identification of
NFR conflicts and facilitate discussion towards requirements
prioritization tasks in requirements engineering. Our approach
is based on using the ISO/IEC 9126 quality ontology to
underpin the NFR description and reasoning mechanisms to
pinpoint potential NFR conflicts that need to be further
discussed by stakeholders. The work is implemented in the
ElicitO requirements elicitation tool. We also report results of
applying the approach and the tool to identify conflicts in
requirements elicitation activities at the student intranet project
of the University of Manchester (Manchester Unity Web
Project).

Keywords: Non-functional requirements, requirements
engineering, conflict identification, ontologies.

1. Introduction
Addressing Non-Functional Requirements (NFRs) or

Quality Requirements are vital to the success of software
systems [1], playing a crucial role during systems development
and serving as quality criteria for assessing software
effectiveness [2]. Errors related to identification of NFRs are
generally acknowledged to be the most expensive and difficult
to correct once the information system has been completed [2,
3]. Without a well defined set of NFRs and their proper
fulfillment, software projects are vulnerable to failure [4].

Thus, finding the right configuration of NFRs is an
important step towards achieving a successful software
deliverable. NFRs, on the other hand, have numerous complex
and nontrivial interdependencies. NFRs conflict with each other
when they make contradicting statements about a software
attribute, and they cooperate when they mutually enforce such
attributes [5]. As requirements are being elicited and modeled,

the challenging task is to maintain an agreement between all the
stakeholders. This is because it is common for conflicts to arise
in connection to NFRs which often take place especially in a
situation where there is a large number of stakeholders with
different backgrounds and perceptions of the problem [6].

This paper describes how quality ontologies can be used
to support the identification of NFR conflicts and facilitate
discussion towards requirements prioritization tasks in
requirements engineering. Our approach is based on using the
ISO/IEC 9126 quality ontology to underpin the NFR description
and reasoning mechanisms to pinpoint potential NFR conflicts
that need to be further discussed by stakeholders. The work is
implemented in the ElicitO requirements elicitation tool. We
also report results of applying the approach and the tool to
identify conflicts in requirements elicitation activities at the
student intranet project of the University of Manchester
(Manchester Unity Web Project).

The remainder of this paper is divided as follows: Section
2 discusses issues related to conflict identification. Section 3
provides examples of conflicts in quality requirements. Section
4 discusses how quality ontologies are used to support
requirements elicitation and conflict identification. Section 5
describes the design of the ontology for conflict identification.
Section 6, provides an example using ElicitO tool to identify
conflicts and section 7 presents some related work in conflict
identification. Section 8, summarizes the paper, discusses the
key contribution, and future work.

2. Conflict Identification
The term conflict can be taken to mean interference in one’s
party’s activities, needs or goals, caused by the activities of
another party [7]. Literature concerned about conflicts originates
from different fields such as social psychology, cognitive
science, and sociology [8]. However and for the purpose of this
paper we will focus on conflicts in the requirements engineering
literature which is defined by Lamsweerde [9] as “conflict is a
divergence between goals – there are feasible boundary
conditions that makes the goals inconsistent”. Robinson [10]
also argued that many inconsistencies originate from conflicting
goals; inconsistency management should, therefore, proceed at
the goal level.

Taiseera Al Balushi

Information Systems
Department, College of

Commerce and Economics,
Sultan Qaboos University,

P.O. Box 20, PC 123 Al
Khod, Oman

+968 24142970

taisira@squ.edu.om

Pedro R. Falcone Sampaio, Mitul Patel

Business Systems Division, Manchester
Business School, The University of

Manchester, Booth Street West,
Manchester M15 6PB, UK

+44 (0)161 306 3349

P.Sampaio@manchester.ac.uk

Mitul.Patel@student.manchester.ac.uk

Oscar Corcho

School of Computer Science,
University of Manchester, Oxford
Road, Manchester M13 9PL, UK

 +44 (0) 161 275 6821

Oscar.Corcho@manchester.ac.uk

Pericles Loucopoulos

Business School,
Loughborough University,
Loughborough LE11 3TU,

UK
+44 (0)1509 22 8273

P.Loucopoulos@lboro.ac.uk

929

Easterbrook [7] identified two sources of conflicts in
requirements engineering: conflicts between the participants
perceptions of the problems, and conflicts between the many
goals of design. Conflicts can also arise in connection to NFRs,
thus NFRs can make conflicts and cooperation instances more
obvious, because changes in quality attributes often cause
certain functional changes that in turn affect other NFRs [5].

Many methods exist to deal with conflict resolution in
requirements but for the purpose of this paper we will
investigate the approaches that deal with NFR conflict
resolution. McCall [11] provided a checklist of attribute
capabilities to be considered in requirements specifications
without an automated conflict analysis. The NFR-goal
framework [12] views NFRs as goals that might conflict with
each other and they must be represented as softgoals to be
satisfied, this is achieved by propagating such information along
positive/negative support links in the goal graph. Boehm and In
[4] propose a knowledge base where NFRs are prioritized
through the stakeholders’ perspective, dealing with NFRs high
level of abstraction. Easterbrook [7] provides a framework for
conflict resolution between domain specifications. Egyed [5]
identifies requirements conflicts and cooperation using
software attributes and eliminates false conflicts and
cooperation automatically with the help of a trace analysis
technique.

Although these approaches analyzed the identification,
communication, and conflict resolution, they do not
comprehensively address the following issues:

• Define a terminology for standardizing the non-functional
requirements definitions and meanings.

• Examine the nature and correlations between NFRs that
potentially may result in a conflict.

• Automate the process of conflict identification using
knowledge management techniques.

This paper describes how quality ontologies can be used to
support the identification of NFR conflicts and facilitate
discussion towards requirements prioritization tasks in
requirements engineering. Our approach is based on using the
ISO/IEC 9126 quality ontology to underpin the NFR description
and reasoning mechanisms to pinpoint potential NFR conflicts
that need to be further discussed by stakeholders.

3. Examples Of Conflicts In Quality
Requirements

NFRs, as investigated by [5], conflict with each other
when they make contradicting statements about some software
attribute, and they cooperate when they mutually enforce such
attributes. Thus it is important to understand how NFRs relate
to each other in order to identify the key conflicts early in the
requirements elicitation process and before the project evolves
to a situation where it is hard to manage the set of NFRs
developed by the stakeholders.

In this section we study the relationship among NFRs. We
adopted the ISO/IEC 9126 [13] as a standard quality model and
terminology for describing NFRs. Table 1 shows some
relationships between quality requirements at the quality sub-

characteristics level. The quality requirements may cooperate
(+), conflict (-), or have no effect with each other (0). This
model was adopted from a range of contributions specialized in
analyzing the quality requirements relationships [5, 14, 15]. The
table does not cover all the quality sub-characteristics listed in
the ISO/IEC 9126 limiting it to the common ones used in
software projects; usability [16-19], security [20] and efficiency
[21].

Table 1 Correlations between ISO/IEC 9126 Quality
Requirements

Effect

A
cc

u
ra

cy

In
te

ro
p

er
a

b
lit

y

S
e

cu
ri

ty

R
e

co
ve

ra
b

ili
ty

F
au

lt
To

le
ra

nc
e

L
ea

rn
a

b
ili

ty

U
n

d
e

rs
ta

n
da

b
ili

ty

A
ttr

ac
tiv

e
n

es
s

O
p

e
ra

bi
lit

y

T
im

e
 B

eh
a

vi
o

u
r

R
e

so
u

rc
e

U
til

iz
a

tio
n

Accuracy + 0 0 0 0 + + + + - -
Interoperablity 0 + 0 0 0 0 0 0 + 0 -
Security + 0 + 0 0 0 0 - - - -
Recoverability 0 0 0 + + 0 0 0 + - -
Fault Tolerance 0 0 0 + + 0 0 0 + - -
Learnability + 0 0 0 0 + + 0 + 0 0
Understandability + 0 0 0 0 + + 0 + 0 0
Attractiveness 0 + - 0 0 + + + + 0 0
Operability + + - + + + + + + + +
Time Behaviour - 0 - - - 0 0 0 + + -
Resource Utilizatio - - 0 - - 0 0 0 0 - +

Quality
Requirement

(+) represents a positive effect, (-) represent negative effect, (0) represents no effect

In an ideal universe, every system would exhibit the
maximum possible value for all its quality requirements but this
is often unattainable. Thus it is important to learn which quality
requirements are most important to the success of a project.
From Table 1, design approaches that require higher accuracy
also enforce other quality requirement such as learnability,
understandability, attractiveness, and operability. However,
higher accuracy may also increase response time and resource
consumption which are often undesirable by stakeholders.
Therefore, to reach the optimum balance of quality
requirements, we must identify, specify, and prioritize the
pertinent quality attributes during requirements elicitation.

4. Using Quality Ontologies To Support
Elicitation And Conflict Identification

Quality ontologies were used with requirements elicitation
by providing the requirements analysts with the knowledge
repository to support elicitation activities [22, 23] by defining
quality sub-characteristics and metrics that need to be specified
towards describing the requirements with appropriate levels of
precision. Quality ontologies can also be used to support
conflict identification in connection to NFRs by offering the
following benefits:

• Provide a shared domain vocabulary for the NFRs to avoid
ambiguities among stakeholders.

• Analyze the relationships between quality requirements in
order to avoid combining conflicting requirements by
stakeholders.

930

• Encode specialized knowledge to support the formulation
of competency questions with regard to quality
requirements meanings and relationships among each other.
Thus facilitating the elicitation of a complete set of conflict
free quality requirements.

In order to achieve these goals, our motivation is to
develop an ontology driven requirements elicitation and
negotiation/prioritization method, guided by a standard quality
model. The quality model is encoded as a quality ontology, and
automated by a requirements elicitation tool ElicitO[23],
helping to address quality factors during elicitation interviews as
well as dealing with NFRs trade-offs. Figure 1 illustrates the
proposed approach. There are two main ontologies important to
guide the elicitation and conflict identification: Quality
ontology, which is based on software quality models
representing reusable knowledge about different quality
characteristics, sub-characteristics, and metrics. Domain
ontology, which provides a conceptual structure of the domain
(e.g. university helpdesk, in this paper) including functions,
activities, relationships, etc.

The implementation of the ElicitO tool [23] was carried out
using Protégé. It only addresses requirements elicitation by
empowering requirements analysts with expert domain
knowledge about the functional aspects via a domain ontology
and non-functional requirements via a quality ontology relevant
to a given domain. For the purpose of this paper we continue
working with the quality ontologies to help with requirements
negotiation and conflict identification once the requirements are
elicited.

Figure 1 Ontology Guided Requirements Elicitation and
Conflict Identification Framework

As the requirements are being elicited [22] the
requirements analyst can also assist the stakeholders in
analyzing and validating these sets of requirements for
identifying conflicts. The ElicitO tool facilitates this process by
highlighting potential conflicts to allow further communication
and negotiation until the stakeholders’ reach an agreement and
quality attributes are prioritized.

5. The Design Of The Ontology For Conflict
Identification

The ontologies for conflict identification are developed in
OWL and they describe the domain classes, properties and
restrictions of the functional and quality requirements
knowledge, as illustrated Figure 2. There are two ontologies
underpinning the conflict identification process:

• Quality Ontology: represent the quality taxonomy which is
decomposed into four main components as shown in Figure
2 (1) and corresponds to the relationships between quality
characteristics (Conflict or influence each other), (2)
corresponds to the ISO/9126 quality model (quality
characteristics and quality sub-characteristics), and (3)
represents the quality metrics. The quantitative measures
for the metrics are borrowed from SUMO [24]
(information, time, length, and mass measures).

• Domain Ontology, and in our case is the helpdesk ontology
for which we used text books, standards, and interviewed
domain experts (helpdesk operators with more than 5 years
of experience each). We have also borrowed some classes
and properties defined in other ontologies such as SUMO
[24]. For examples SUMO Entity (page, center, helpdesk,
student), SUMO processes (borrowing, search, register)
etc.
The restrictions are then defined for classes in the previous

ontologies to determine what metrics are representing the quality
characteristics and sub-characteristics as shown in Figure 2. In
addition, it represents the metrics related to the domain
activities.

The restrictions specified above were used to restrict an
individual that belongs to a class (e.g. helpdesk has-metric
page_downloads_speed). The quality ontology, however,
doesn’t provide a mean of performing specific actions on the
ontologies (i.e. conflict identification). In order to conduct
conflict identification actions we incorporated conflict
identification reasoning to the system by applying the rule
reasoning framework supported by JessTab [25]. Although the
rules are expressed in Jess, other languages such as SWRL
(Semantic Web Rule Language) could be used; however we
have selected Jess due to its configurability and usability in
protégé via Jesstab.

There is a rule for each pair of quality attributes as
indicated in Table 1. These rules are to be fired when the
stakeholders combine two conflicting requirements in order to
alert the stakeholders and allow further discussion. Examples of
Jess Rule that will be fired when the stakeholders combine two
conflicting requirements are shown in Figure 3.

The ElicitO tool also offers additional features using Jess
Rules such as:

• Separation between the knowledge base model (quality and
domain ontologies) and the model where the actions are
performed. This is because the first model is standardized
and shared with regards to quality attributes related to a
particular domain, however, the second model reuses the
first model but with extra actions depending on the
objectives of the ontology based applications, in our case
it’s used for requirements elicitation and conflicts
identification.

931

• Help with identifying conflicts early as requirements are
elicited to facilitate further discussion among stakeholders
until they reach an agreement and prioritize requirements.

Domain Ontology

1

2

3

Restriction

Quality Ontology

Figure 2 Quality Ontologies in Protégé

By extending the features of ElicitO with conflict
identification capabilities, the requirements analysts are
empowered with a knowledge repository to help with
requirements elicitation and conflict identification. The
automation of conflicts identification tasks is especially useful in
projects involving multiple stakeholders and that can scale up to
thousands of requirements.

6. Running Example Using ElicitO
To assess the effectiveness of the approach, the authors

attended a focus group session which was one of the ongoing
sessions in connection with University of Manchester Unity
Web Project for the purpose of enhancing the current helpdesk
website of the university. The participants were from different
departments with different views, assumptions, and as a result,
different requirements. The participants were asked for what
they want to see in the new system and what sort of problems
they have encountered with the old system. A two hour session
was conducted jointly with stakeholders, the first hour was
dedicated to requirements elicitation and the second hour was
dedicated to requirements prioritization. The requirements
elicited during the elicitation phase are as presented in Table 2.
As indicated from the table, the types of requirements are
limited, very general, and vary from functional and non-
functional requirements with very little attention to quality
requirements (R2, R3, and R5).

The second stage of the session was the requirements
prioritization on which the requirements engineer asked the
participants to rank the above requirements with either essential
or nice to have as illustrated in Table 3. This had the potential
to trigger conflicts as every participant would vote high for what
they want disregarding how their requirements might conflict
with others. For example, R5 and R6 are considered essential by
the majority of the participants but they might conflict with the

issue of security which wasn’t taken into account by the
requirements analysts.

 (defrule time-security (Req_Time_Behaviour TRUE)

 (Req_Security TRUE) => (printout t "Time Behaviour and

 Security are Conflicting requirements" crlf))

 (defrule attractivness-security (Req_Attractiveness TRUE)

 (Req_Security TRUE) => (printout t "Attractiveness and

 Security are Conflicting requirements" crlf))

Figure 3 Jess Rules Example

In contrast to the unstructured and ad-hoc approach
conducted during the focus group sessions, another session was
conducted using the ElicitO tool for the requirements elicitation
and prioritization activities which provided the relevant domain
and quality knowledge to the requirements analysts to be more
effective in conducting the elicitation/prioritization interviews.
The tool highlights all the functional activities of the domain
and their attached quality characteristics. The analyze
requirements button will examine the requirements for potential
conflict anytime during the requirements elicitation Figure 4(a).
The analyze requirements button will fire the Jess Rule that will
check the requirements for potential conflicts and a list of
conflicting requirements are as highlighted in Figure 4 (b). The
analyst then selects a set of conflicting requirements to allow
further discussion/negotiation and prioritization Figure 4 (c).

Table 2 Requirements Captured without the tool support

Update the staff directory frequently R11

Highlight important events or alertsR10

Provide links to the outside worldR9

Provide information about exam timetables and venuesR8

Provide information on how to report a problem and to whomR7

Make students user names accessible to faculty when using WebCT
(e-learning) to register students

R6

Make the university regulations and policies easy to accessR5

Provide campus map when requiredR4

Make the websites among different schools consistentR3

FAQ should be clear and simple in answering users technical
problems

R2

Provide information/pathway onto how to access web services (i.e.
web mail, network drive, etc.)

R1

User Requirements

For the discussion and prioritization activity, all the

participants assess the perceived return on value of the quality
requirement by each participant using a scale from (1-5): 1-no
value, 2-little value, 3-some value, 4-high value, 5-very high
value [26]. For each requirement the mean value of all
participants’ assessment is calculated and a priority is specified.
The participants can also write a short justification for choosing
a certain quality requirement over the other. The same process
is applied for each conflicting requirements. Figure 4 (b)
presents the prioritized requirement of one quality requirement

932

over the other requirement in addition to the detailed
requirements specifications (using the same amount of time as of
the first session).

Table 3 Requirements Prioritized without the tool support

EssentialUpdate the staff directory frequently R11

Nice to haveHighlight important events or alertsR10

Nice to haveProvide links to the outside worldR9

EssentialProvide information about exam timetables and
venues

R8

Nice to haveProvide information on how to report a problem and
to whom

R7

EssentialMake students user names accessible to faculty when
using WebCT (e-learning) to register students

R6

EssentialMake the university regulations and policies easy to
access

R5

EssentialProvide campus map when requiredR4

Nice to haveMake the websites among different schools consistentR3

EssentialFAQ should be clear and simple in answering users
technical problems

R2

Nice to haveProvide information/pathway onto how to access web
services (i.e. web mail, network drive, etc.)

R1

PriorityUser Requirements

The findings obtained from the focus group sessions with
ElicitO support can be listed up as follows:

• The knowledge encoded in the ontology formalizes the
quality requirements and makes them explicit throughout
the requirements elicitation process which reduces the
problem of understanding caused by different
interpretations of quality requirements.

• The knowledge encoded in the ontology is based on the
ISO/IEC 9126. Quality model extended by adding metrics
and defined relationships among the quality factors to
enable analysts in capturing a rich set of non-functional
requirements.

• The numbers of functional and quality requirements
captured were far more than the initial number of
requirements elicited without the tool support. The quality
requirements were associated with the functional
requirements which have added value to the functional
requirements.

• The non-functional requirements were not only extensively
identified by the stakeholders but they were also precisely
specified via metrics.

• The tool identifies the conflicting requirements early in the
process so the stakeholders can negotiate and rank the
requirements. Thus facilitating and speeding up the
software engineering process.

Overall the ElicitO tool facilitated the requirements
elicitation activities by providing the required functional
requirements, quality requirements and precise metrics to the
requirements analysts about a specific application domain via
the knowledge encoded in the ontology. ElicitO also helped
with the identification of potential conflicts among desired
quality attributes and facilitated agreement on a balance of
attribute satisfaction via communication and quality
requirements prioritization.

Figure 4 (a): requirements document; (b): list of conflicting
requirements; (c): conflicting requirements

negotiation/prioritization

7. Related Work
In general, our approach complements the other work

related to quality requirements conflicts identification. Boehm
and In [4] proposed Quality Attribute Risk and Conflict

(a)

(b)

(c)

933

Consultant knowledge-base tool (QARCC) an exploratory
knowledge-based tool for identifying potential conflicts and
risks among quality requirements early in the software life cycle.
QARCC uses a knowledge base to identify software architecture
and process strategies to achieve this quality attribute. Another
approach is the requirements negotiation tool (Oz) [27] which
effectively support an automated conflict detection,
characterization, and resolution generation, and resolution
decision-making support. In the NFR framework [12] quality
requirements are identified, decomposed, and prioritized so an
effective design solution is found. Our proposed method
ElicitO, improved on the other approaches by supporting the
quality requirements elicitation and conflict identification for
both functional and non-functional requirements via quality
ontology knowledge based domain independent tool.

8. Conclusions And Future Work
This paper proposes an elicitation and conflict

identification approach for non-functional requirements and
associated tool ElicitO aimed at supporting requirements
analysts with a knowledge repository that helps in eliciting a
comprehensive and conflict free set of requirements. The
approach is based on the application of functional and non-
functional domain ontologies (quality ontologies) to underpin
the elicitation and conflict identification activities.

The ISO/IEC 9126 quality model was adopted as a
baseline for addressing quality concerns and the NFRs
relationships are analyzed and codified using rules to help with
reasoning about conflict identification. The approach and the
tool were evaluated using a web project at the University of
Manchester, where it proved to help in identifying potential
conflicts and allowing participants to further discuss the
requirements to effectively and efficiently reach an agreement.

9. References
[1] L. Chung and B. A. Nixon, "Dealing with non-functional

requirements: three experimental studies of a process-oriented
approach," presented at Proceedings of the 17th international
conference on Software engineering, Seattle, Washington, United
States, 1995.

[2] J. Mylopoulos, L. Chung, and B. Nixon, "Representing and Using
Non-Functional Requirements: A Process Oriented Approach,"
IEEE Transactions on Software Engineering, vol. 18, pp. 483-497,
1992.

[3] L. M. Cysneiros and J. C. S. d. P. Leite, "Integrating Non-Functional
Requirements into Data Modeling," presented at Proceedings of
IEEE International Symposium on Requirements Engineering,
Ireland, 1999.

[4] B. Boehm and H. In, "Identifying quality-requirement conflicts,"
Software, IEEE, vol. 13, pp. 25-35, 1996.

[5] A. Egyed and P. Grunbacher, "Identifying requirements conflicts
and cooperation: how quality attributes and automated traceability
can help," Software, IEEE, vol. 21, pp. 50-58, 2004.

[6] B. Nuseibeh and S. Easterbrook, "Requirements Engineering: A
Roadmap," presented at Proceedings of the conference on The
future of Software engineering, Limerick, Ireland, 2000.

[7] S. Easterbrook, "Resolving Requirements Conflicts with Computer-
Supported Negotiation," in Social and Technological Issues in
Requirements Engineering, M. Bickerton and M. Jirotka, Eds.:
Academic Press, 1993.

[8] S. Easterbrook, E. Beck, S. Goodlet, L. Plowman, M. Sharples, and
C. Wood, "A survey of empirical studies of conflict," in CSCW:
Cooperation or conflict?: Springer-Verlag, 1993, pp. 1-68.

[9] A. Lamsweerde, E. Letier, and R. Darimont, "Managing Conflicts
in Goal-Driven Requirements Engineering," IEEE Transactions
on Software Engineering, vol. 24, pp. 908 - 926, 1998.

[10] W. N. Robinson, "Integrating Multiple Specifications Using
Domain Goals," presented at Proc. IWSSD-5—Fifth Int’l
Workshop Software Specification and Design, Pittsburgh, United
States, 1989.

[11] J. A. McCall, P. K. Richards, and W. G.F, "Factors in Software
Quality," Technical Report, AD/A-049-014/015/055, National
Technical Information Service 1977.

[12] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-
Functional Requirements in Software Engineering. Norwell,
Massachusetts: Kluwer Academic Publishing, 2000.

[13] "ISO/IEC 9126-1:2001 Software engineering --Product quality --
Part 1: Quality model."

[14] X. Franch and J. P. Carvallo, "Using quality models in software
package selection," IEEE Software, vol. 20, pp. 34-41, 2003.

[15] K. Wiegers, Software Requirements: Practical Technologies for
Gathering and Managing Requirements Throughout the Product
Development Cycle: Redmond, Wash- Microsoft Corp, 2003.

[16] J. Nielsen, Designing Web Usability: the practice of simplicity:
New Riders Publishing, 1999.

[17] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, "Usability
Meanings and Interpretations in ISO Standards," Software Quality
Journal, vol. 11, pp. 325–338, 2003.

[18] L. M. Cysneiros, V. M. Werneck, and A. Kushniruk, "Reusable
Knowledge for Satisficing Usability Requirements," presented at
Proceedings of the13th IEEE International Conference on
Requirements Engineering, 2005., 2005.

[19] M. Moraga, C. Calero, I. Paz, O. D�az, and M. Piattini, " A
Reusability Model for Portlets," presented at International
Workshops on Web Information Systems Engineering, WISE
2005, New York, USA, 2005.

[20] D. Firesmith, "Engineering Security Requirements," Journal of
Object Technology, vol. 2, pp. 53-68, 2003.

[21] Y. Yuan, "Efficiency metrics model for component-based
embedded application software," presented at Second
International Conference on Embedded Software and Systems,
2005., 2005.

[22] T. AlBalushi, P. Sampaio, D. Dabhi, and P. Loucopoulos,
"Performing Requirements Elicitation Activities Supported by
Quality Ontologies," presented at Proceedings of the Eighteenth
International Conference on Software Engineering and
Knowledge Engineering, San Francisco, 2006.

[23] T. AlBalushi, P. Sampaio, D. Dabhi, and P. Loucopoulos, "ElicitO:
A Quality Ontology-Guided NFR Elicitation Tool," presented at
Proceedings of the 13th Working Conference on Requirements
Engineering: Foundation for Software Quality (REFSQ'07),
Trondheim, 2007.

[24] SUMO, "Standard Upper Merged Ontology," vol. April, 2007,
2003.

[25] H. Eriksson, "Using JessTab to integrate Protege and Jess," IEEE
Intelligent Systems, vol. 18, pp. 43-50, 2003.

[26] S. Ziemer, P. R. F. Sampaio, and T. St�lhane, "A decision
modelling approach for analysing requirements configuration
trade-offs in time-constrained Web Application Development,"
presented at Proc. Eighteenth International Conference on
Software Engineering and Knowledge Engineering (SEKE 2006),
San Fransisco, 2006.

[27] W. N. Robinson and S. Fickas, "Automated Support for
Requirements Negotiation," presented at AAAI-94 Workshop on
Models of Conflict Management in Cooperative Problem Solving,
1994.

934

Ontology-Based Process Modeling and Execution using STEP/EXPRESS∗

Arndt Mühlenfeld, Wolfgang Mayer, Franz Maier, Markus Stumptner

Advanced Computing Research Centre
University of South Australia

5095 Mawson Lakes, SA, Australia

E-mail: {muehlenfeld|wolfgang.mayer|franz.maier|mst}@cs.unisa.edu.au

Abstract

A common data format as provided by the STEP/EX-
PRESS initiative is an important step toward interoper-
ability in heterogeneous design and manufacturing envi-
ronments. Ontologies further support integration by pro-
viding an explicit formalism of process and design knowl-
edge, thereby enabling semantic integration and re-use of
process-information. By formalizing the process-model in
EXPRESS, we gain access to the domain knowledge in the
STEP application protocols. We present an approach to
process modeling using different models for abstract pro-
cess knowledge and implementation details. The abstract
process model supports re-use and is independent of the im-
plementation. As a result, we translate the process model
in combination with the implementation model to an exe-
cutable workflow.

1. Introduction

Modern industrial design manufacturing processes allow

for collaboration among organizations and organizational

units within large companies. Design knowledge that is

spread over several design teams and systems is difficult to

integrate. The lack of interoperability in heterogeneous in-

formation systems results from incompatible data formats

and differences between domain models. Data exchange

between design stages requires definition of mappings be-

tween data representations or the use of a common for-

mat. STEP/EXPRESS is an established standard for prod-

uct data representation and solves the problem of incom-

patible data formats. Differences in domain models are ad-

dressed by modeling semantic knowledge in ontologies. Se-

mantic interoperability between design disciplines is usu-

ally achieved by using a common upper ontology [12] or

∗This work was funded by the CRC for Advanced Automotive Technol-

ogy under project C4-801 Process Modelling in the Automotive Industry.

mappings between domain ontologies [16]. N.Guarino [4]

proposes a model for information integration that uses sepa-

rate ontologies for task and domain knowledge with a com-

mon upper ontology.

In this paper we present a meta-model for task ontologies

of industrial processes that integrates process knowledge

with artifact representation. The meta-model provides us

with the means to express knowledge over artifacts and re-

construct provenance. We utilize established workflow ex-

ecution engines for enacting the process model by building

a meta-model for the execution environment and defining

a mapping between the process and the enactment meta-

models. The process meta-model has two parts, an abstract

process model and an implementation model. Keeping the

implementation details separate from the process model

makes the conceptual model clearer and better suited for

re-use. We use EXPRESS to specify our ontological model,

which gives us direct access to the information models of

the STEP Standard. Furthermore, we can use the same lan-

guage for (a) process models and (b) artifacts represented in

STEP. In order to close the gap between specification and

implementation we present a mapping of process specifica-

tions to a specific workflow engine. Most workflow engines

provide an execution trace of the enacted workflow and sup-

port data provenance. We present an example mapping for

a specific workflow execution engine to demonstrate that

our process model contains the necessary information. The

process model is independent of the actual workflow en-

gine and can be mapped to several different engines. Spec-

ification of mappings between our process meta-model and

the meta-model of a specific workflow engine enables auto-

matic translation of process models. Hence, we are free to

use the workflow execution engine that best suits the target

environment.

In Section 2 we introduce our meta-model and the bene-

fits arising from formalizing it using STEP/EXPRESS. Sec-

tion 3 is dedicated to the enactment of the process model.

We use an implementation model and transformations to

create a specific workflow that can be fed to a workflow

935

execution engine. An example of a process-model transfor-

mation is given in Section 4. In Section 5 we present related

work. Our contribution and future work is summarized in

Section 6.

2. Process Modeling with EXPRESS

2.1. The EXPRESS Language

The STEP standard (ISO 10303) defines a collection of

application protocols representing data models for differ-

ent domains. EXPRESS is the modeling language used for

the data models and is specified in Part 11 of the standard

[6]. The language is able to represent entity-relationship

concepts in an object-oriented way. Its powerful represen-

tation of constraints on data has shown to be suitable for

formal specifications and meta programming [1]. An appli-

cation model in EXPRESS comprises types, functions and

data objects called Entities. Entities consist of attributes and

constraints related to the attributes. Entities are the central

elements of the language and represent classes of objects.

As in object-oriented languages, classes are structured hi-

erarchically by inheritance. The elements of a model are

grouped into a Schema. Schemata are like name spaces and

can be referenced by other schemata.

The language is powerful enough to express the struc-

ture of any meta-model within an EXPRESS Schema and

the standardized access interface in several languages bind-

ings allows for the generation of a meta-data management

systems suited to the target systems [14].

2.2. The Process Model

Figure 1. An overview of the meta-model in
UML.

In the meta-model depicted in Figure 1 an abstract Pro-
cess is either a CompoundProcess comprising one or more

processes or an indivisible SimpleProcess. A Process has

input and output Ports for input and output data. The data

expected on a port is specified by a ParameterDescription
which in turn includes ModelVariables, if it represents a

complex structure like a parametric model. Constraints
specify the behavior of the process in the role of precon-

ditions and postconditions. A DataFlow connects output

ports with input ports and is the basic building block for

data flow in the process model. Control flow is modeled in-

dependently of the data flow by Transitions. A process can

have many ingoing and outgoing transitions.

ENTITY P a r a m e t e r D e s c r i p t i o n ;

d e s c r i p t i o n : STRING ;

v a r i a b l e : SET [0 : ?] OF Mode lVar i ab l e ;

i s s i m i l a r t o : SET [0 : ?] OF P a r a m e t e r D e s c r i p t i o n ;

END ENTITY ;

ENTITY P o r t

SUBTYPE OF (NamedEnt i ty) ;

d e s c r : P a r a m e t e r D e s c r i p t i o n ;

END ENTITY ;

ENTITY DataFlow ;

s o u r c e : P o r t ;

t a r g e t : P o r t ;

WHERE
d a t a i s c o m p a t i b l e :

(s o u r c e . d e s c r = t a r g e t . d e s c r) OR
(s o u r c e . d e s c r IN t a r g e t . d e s c r . i s s i m i l a r t o) OR
(t a r g e t . d e s c r IN s o u r c e . d e s c r . i s s i m i l a r t o) ;

END ENTITY ;

Listing 1. Specification of entities Parameter-
Description and DataFlow in EXPRESS

The process model presented above does not specify the

properties of the data exchanged between processes. The

data model makes use of the application protocols of the

STEP Standard and is domain dependent. We use AP 214

to model the data of the design optimization process, be-

cause it contains the domain knowledge for automotive de-

sign processes. The full data model is beyond the scope of

this document. However, as an example for the expressive-

ness of EXPRESS, we have formulated a rule that ensures

that Dataflows connect only Ports with ”related” parameter

descriptions. Therefore, we define the attribute is similar to
in ParameterDescription, which represents the association

to related objects (see Listing 1). Entity DataFlow has a

rule stating that only ports that have the same parameter de-

scription, or parameter descriptions that are similar to each

other, are allowed as source and target objects.

2.3. The Implementation Model

The process meta-model describes abstract properties,

process components and their relationships, but not how

a process can be executed or where the data for its ports

are stored. This information is part of the implementation

model. The implementation meta-model in Figure 2 defines

two types of process instances, WebService and Executable.

For the sake of brevity, details on Web Services are omitted.

An Executable has at least two possibilities for its input. In

936

Figure 2. An overview of the implementation
model in UML.

our model, it can receive input from physical storage (Phys-
icalStorage), e.g., a File, or as a command-line parameter

(CommandLineArg). Physical processes are part of a Pro-
cessInstance or a GuardedTransitionInstance. The former

is the realization of a Process in the process-model; the lat-

ter is a process that evaluates the guards of a Transition in

the process-model. Realizing the evaluation of guards for

conditional execution as a physical process keeps the model

independent of the constraint language. Not visible in the

UML-diagram, but specified in EXPRESS is the constraint

has result. It expresses the invariant that an entity of class

GuardedTransitionInstance has to provide a port named ’re-

sult’ for the evaluation result (see Listing 2). This is possi-

ble, because AbstractInstance provides an attribute contain-

ing a set of instantiated ports which is overridden by its de-

rived concrete entities. For example, in Executable the port

list is extracted from the list of ExecutablePortData.

3. Workflow Execution

Figure 3. Process execution.

Our process model in combination with the implemen-

tation model contains all necessary data for enactment. A

couple of workflow engines exist that have already reached

the required maturity for production environment (e.g. Ke-

pler [9], MyGrid/Taverna [13]). We do not want to tie our

model to a specific workflow system but prefer to have the

choice to use the best system for particular requirements.

FUNCTION g e t p o r t s p e c s f r o m p o r t d a t a (p o r t l i s t : AGGREGATE OF P o r t D a t a)

: SET OF Ent i tyName ;

LOCAL
r e s u l t : SET OF Ent i tyName ;

END LOCAL ;

REPEAT i := LOINDEX (p o r t l i s t) TO HIINDEX (p o r t l i s t) ;

r e s u l t [i] := p o r t l i s t . p o r t s p e c ;

END REPEAT ;

RETURN (r e s u l t) ;

END FUNCTION ;

ENTITY A b s t r a c t I n s t a n c e ;

d e s c r i p t i o n : STRING ;

spec : Ent i tyName ;

DERIVE
p o r t l i s t : SET OF Ent i tyName := [] ;

END ENTITY ;

ENTITY E x e c u t a b l e SUBTYPE OF (A b s t r a c t I n s t a n c e) ;

commandline : STRING ;

d a t a l o c a t i o n s : LIST OF E x e c u t a b l e P o r t D a t a ;

DERIVE
SELF\A b s t r a c t I n s t a n c e . p o r t l i s t : SET OF Ent i tyName :=

g e t p o r t s p e c s f r o m p o r t d a t a (d a t a l o c a t i o n s) ;

END ENTITY ;

ENTITY G u a r d e d T r a n s i t i o n I n s t a n c e ;

i n s t a n c e : A b s t r a c t I n s t a n c e ;

DERIVE
g u a r d e d t r a n s i t i o n s p e c : Ent i tyName := i n s t a n c e . s p e c ;

WHERE
h a s r e s u l t :

SIZEOF (QUERY (p <∗ i n s t a n c e . p o r t l i s t | p = ’ r e s u l t ’)) = 1 ;

END ENTITY ;

Listing 2. Specification of process implemen-
tations in EXPRESS

We keep the model independent of the workflow system

by defining transformations that generate the workflow de-

scription for the target system from the model. We chose the

workflow engine Taverna to demonstrate the approach, be-

cause it is intuitive and simple to use, but powerful enough

to support sophisticated workflows.

3.1. The Workflow Execution Engine Taverna

A workflow in Taverna [13] consists of inputs, outputs,

one or more processors and the data flows between them

(see Figure 4). Processors have an interface for inputs and

outputs. The outputs of processors can be connected to

other inputs or the workflow outputs. The whole workflow

is data flow oriented and the order of execution is defined

by the data dependencies between processors. A processor

is executed as soon as it has got all of its inputs and proces-

sors may execute concurrently. The data flow can lead from

one output to inputs of more than one processor. If an input

is connected to more than one output, the first output to de-

liver the data ”wins”. In addition to the data dependencies

it is possible to restrict the execution order of processors

by defining temporal constraints called ”Coordinate from”.

By defining a ”Coordinate from” association between pro-

cessors A and B, A will only execute when B has com-

pleted. The usual method of creating a workflow in Taverna

is by using its graphical user interface (GUI). However, all

workflows created by using the GUI are passed to the ex-

ecution engine in the workflow description language Scufl

937

Figure 4. Meta-model of workflows in Taverna.

(Simple Conceptual Unified Flow Language). It is a simple

XML-based format representing the elements and links of

the workflow and can be used to execute the workflow with-

out the GUI. It contains the workflow description, a couple

of processors connected by data flow (link) and control flow

edges (coordination) and the inputs (source) and outputs

(sink) of the workflow. For our current project, only two

types of processors are of interest: the local process FailIf-

False for conditional transitions and the Beanshell Scripting

Host for program execution.

3.2. Mapping the Model to a Workflow

The data provided in the process model is sufficient to

define the nodes and links in the workflow. The only miss-

ing information is the definition of the implementation of

the processor nodes. This definition is provided by the im-

plementation model. The four main elements of our pro-

cess that need to be represented in the workflow description

are Process, DataFlow, Transition and GuardedTransition.

A process maps to a processor, where the interface of the

processor is defined by the ports of the process. Data flow

objects have a straight-forward equivalent in the workflow

description; they are represented by links between proces-

sor interfaces. A transition has no direct equivalent in Scufl.

The closest representation is a coordinating link, but coor-

dination is more restrictive than a transition. Consider a

process A with two transitions coming from process B and

C. In our model, the precondition of process A specifies, if

the process waits until both or only one of the processes B

and C have finished execution. In Scufl, both processes have

to finish execution successfully if A is coordinated from B

Figure 5. Implementation of a guarded transi-
tion in the target workflow.

and C. We keep it simple and stick to the behavior of Scufl’s

coordination element and define that a process has to be

reached by all transitions in order to start its execution. The

most sophisticated part of the workflow generation is the

implementation of a transition with guards, i.e., a Guard-

edTransition. We implement it in the workflow description

by using a processor for the evaluation of the constraint fol-

lowed by a conditional node (FailIfFalse) and a ”coordinate

from”-edge to the conditional node (see Figure 5). This

rough sketch of how to implement the workflow in Scufl

gives a first impression on how to achieve our goal. In order

to formalize the transformation we first start by defining the

source and target models.

Definition 1
Let X(PX , IX , OX , DX , CX) represent a workflow, where

PX ... set of processors {pi(ii,1 . . . ii,M , oi,1 . . . oi,N)|0 <
i ≤ NX}, ii,j .. input j of processor i, 0 < j ≤ Mi,
oi,j .. output j of processor i, 0 < j ≤ Ni,

IX ... set of inputs of the workflow, represented as proces-
sor outputs {o0,j |0 < j ≤ N0},

OX ... set of outputs of the workflow, represented as pro-
cessor inputs {i0,j |0 < j ≤ M0},

DX ... data flow between processors represented by a set
of links {dν = oi,j → ik,l}.

CX ... set of coordinations c(pi, pj), coordinate processor
pi from pj .

938

Definition 2
Let M(ΠM , RM , DM , TM , GM) denote a process model,
where

ΠM ... set of processes {πi|1 ≤ i ≤ NΠ},

RM ... set of ports {ri|1 ≤ i ≤ NR}, Ri ∈ RM ... set of
ports of process πi,

DM ... set of data flow links {lν(ri → rj)},

TM ... set of transitions {tν(πi → πj)},

GM ... set of guarded transition {gν(γν , πi → πj)}, γν ...
guard

Using the two definitions we can write the algorithm to

obtain a workflow X from the process model M as follows:

1. ∀π ∈ ΠM : create processor pi with inputs Ii and out-

puts Oi corresponding to the ports in Rπ .

2. ∀t(πi → πj) ∈ TM : create ”coordinate from”

c(pi, pj).

3. ∀g(γ, πi → πj) ∈ GM :

(a) create processor pk with inputs Iγ and output oγ .

(b) create processor ”FailIfFalse” (pf) with input if .

(c) create data flow dγ = oγ → if .

(d) create coordinations cγ,1(pi, pk) and

cγ,2(pf , pj).

4. ∀lν(ri → rj) ∈ DM : create data flow dν = (o(ri) →
i(rj)).

4. Example workflow

We tested the workflow generation on a process model

for multi-disciplinary design optimization in the automo-

tive industry [15]. Part of the process is the generation of an

instance mesh from a geometric model, which is later used

by the finite element analysis. The process model of the in-

stance mesh generation contains conditional transitions that

select between two possible paths in the process. Depend-

ing on the value of a flag (run geometry flag), either a new

mesh is generated or the resulting mesh of a previous run is

fetched.

The implementation model contains four executables for

the two sub-processes and the evaluation of the constraints

on the two guarded transitions, respectively. After applying

the transformations presented in the previous section, we

get a workflow that can be visualized in the Taverna GUI

(see Figure 6) and executed inside the GUI or with the stan-

dalone workflow execution engine.

Figure 6. The example workflow in Taverna.

5. Related Work

A number of other process ontologies exist [2, 3, 8]. But

to our knowledge, no other work uses EXPRESS to formal-

ize a process model with workflow enactment. An extensive

evaluation of other ontologies in the context of industrial

design processes can be found in [10].

Our approach consolidates process and artifact ontolo-

gies under a common STEP/EXPRESS meta-model. We

chose EXPRESS because it comes with huge artifact on-

tologies and is well-suited for meta-modeling. It can be ar-

gued that other standard languages like the process specifi-
cation language PSL are better suited for process modeling.

PSL offers a rigorous basis for verifiable semantic defini-

tions, but lacks support for context relationships and needs

better definitions of process artifacts [5]. STEP and its ap-

plication protocols provide in contrast sophisticated domain

models for artifact and process modeling.

Mimoune et al. [11] exchange data between heteroge-

neous database systems using a generic meta-schema for-

malized in the EXPRESS language to overcome the difficul-

ties arising from different conceptual models for the same

implementation and structural differences between imple-

mentations of the same conceptual model. Their approach

focuses on the definition of mappings between data base

schemata.

Work has been done to map from business processes to

workflows including ontological mapping between the out-

put of one process and the input of another process. How-

939

ever, a general mapping from control flow oriented meta-

models to data flow oriented systems is hard to achieve [7].

6. Conclusion

Data exchange between different stages of an indus-

trial process is difficult because of the heterogeneity of

the involved systems. The common data format standard

STEP/EXPRESS helps to overcome the structural differ-

ences. The standard defines different encodings and lan-

guage bindings for its specification language EXPRESS.

These “implementation methods” comprise a clear-text and

an XML representation and bindings to the programming

languages C,C++ and Java. STEP is not intended to pro-

vide a common conceptual model, but provides specialized

models for domain knowledge. We use process modeling to

capture process knowledge explicitly. In addition to allow-

ing easier re-use of process components, explicit process

knowledge supports execution tracking so that the prove-

nance of the results is retained.

We propose EXPRESS as the specification language for

the ontologies, because thereby we can directly use the do-

main knowledge specified in the application protocols of

the STEP standard. STEP is already used as a common data

format for many of the process artifacts in the automotive

industry and the data is accessible by our process model

without additional structural conversion overhead. Further-

more, writing our models in STEP/EXPRESS allows us to

use the same tools as already used for data modeling.

Enactment is another important aspect of process model-

ing. We have shown that it is possible to use an abstract pro-

cess model, which is independent of the target platform and

build a workflow description for a specific workflow execu-

tion engine from this model. We have successfully demon-

strated the necessary transformations for the workflow en-

gine Taverna. However, because the process model is inde-

pendent of the workflow engine, we can use any other work-

flow execution engine that provides the necessary function-

ality. In the future, we plan to define transformations for

other workflow execution environments and to investigate

the integration of domain-specific data models and ontolo-

gies.

References

[1] Y. Ait-Ameur, F. Besnard, P. Girard, G. Pierra, and J. C.

Potier. Formal specification and metaprogramming in the

EXPRESS language. In Intl.Conf. on Software Engineering
and Knowledge Engineering (SEKE), pages 181–188, 1995.

[2] B. Chandrasekaran, J. Josephson, and R. Benjamins. The

ontology of tasks and methods. In Proceedings of the 11th
Knowledge Acquisition Modeling and Management Work-
shop, KAW’98, Banff, Canada, Apr. 1998.

[3] J. Gero and U. Kannengiesser. A function-behavior-

structure ontology of processes. Artificial Intelligence
for Engineering, Design, Analysis and Manufacturing (AI
EDAM), 21:379–391, 2007.

[4] N. Guarino. Formal ontology and information systems.

In N. Guarino, editor, Proceedings of the 1st International
Conference on Formal Ontologies in Information Systems,
FOIS’98, pages 3–15, Trento, Italy, 1998. IOS Press.

[5] A. Gunendran, R. Young, A. Cutting-Decelle, and J. Bourey.

Organising manufacturing information for engineering in-

teroperability. In R. Goncalves, J. Muller, K. Mertins, and

M. Zelm, editors, Proceedings of IESA 2007: Enterprise
Interoperability II New challenges and Approaches, pages

587–598. Springer-Verlag London, 2007.
[6] International Organization for Standardization. ISO 10303-

11:1994: Industrial automation systems and integration —
Product data representation and exchange — Part 11: De-
scription methods: The EXPRESS language reference man-
ual. International Organization for Standardization, Geneva,

Switzerland, 1994.
[7] S. Jablonski. On the complementarity of workflow man-

agement and business process modeling. SIGOIS Bull.,
16(1):33–38, 1995.

[8] Y. Kitamura, Y. Koji, and R. Mizoguchi. An ontological

model of device function: industrial deployment and lessons

learned. Applied Ontology, 1(3–4):237–262, 2006.
[9] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,

M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow

management and the Kepler system, 2005.
[10] F. Maier, W. Mayer, M. Stumptner, and A. Mühlenfeld.

Ontology-based process modelling for design optimisation

support. In Third International Conference on Design Com-
puting and Cognition (DCC’08), Atlanta, USA, June 2008.

To appear.
[11] M. E.-H. Mimoune, G. Pierra, and Y. A. Ameur. An

ontology-based approach for exchanging data between het-

erogeneous database systems. In ICEIS (1), pages 512–524,

2003.
[12] P. H. P. Nguyen and D. Corbett. Building corporate knowl-

edge through ontology integration. Advances in Knowledge
Acquisition and Management, 4303/2006:223–229, 2006.

[13] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Fer-

ris, K. Glover, C. Goble, A. Goderis, D. Hull, D. Mar-

vin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens,

A. Wipat, and C. Wroe. Taverna: lessons in creating a

workflow environment for the life sciences. Concurrency
and Computation: Practice and Experience, 18:1067–1100,

2006.
[14] P. Saliou, A. Plantec, and V. Ribaud. Metaprogramming

with EXPRESS and SQL. In International Workshop
Declarative Meta Programming, DMP02. University of Ed-
inburgh, Dec 2002.

[15] C. Seeling. User manual for the crash-box MDO reference

problem. Internal publication, VPAC Ltd, Melbourne, 2007.
[16] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt,

G. Schuster, H. Neumann, and S. Hübner. Ontology-

based integration of information — a survey of existing ap-

proaches. In H. Stuckenschmidt, editor, IJCAI–01 Work-
shop: Ontologies and Information Sharing, pages 108–117,

2001.

940

Reviewers’ Index

A
Alain Abran

Silvia Teresita Acuna
Edward B. Allen

Mikhail Auguston

B
Doo-Hwan Bae
Xiaoying Bai

Maria Teresa Baldassarre
Purushotham Bangalore
Muhammad Ali Barbar

Luciano Barezi
Emese Bari

Saida Benlarbi
Sami Beydeda

Swapan Bhattacharya
Alessandro Bianchi

Jim Bieman
Gary D. Boetticher
Jean-Michel Bruel

Barrett Bryant

C
Kai-Yuan Cai

Danilo Caivano
Gerardo Canfora

Joao W. Cangussu
Giovanni Cantone
Jeffrey C. Carver

Christine W. Chan
Keith C.C. Chan

W.K. Chan
Kuang-Nan Chang

Ned Chapin
I-Chin Chen

Shu-Ching Chen
Yinong Chen
Harry Cheng

Yoonsik Cheon

Peter J. Clarke
Panos Constantopoulos

Kendra Cooper
Maria Francesca Costabile

Karl Cox
Juan J. Cuadrado-Gallego

Alfredo Cuzzocrea

D
Scott Dick

Jin Song Dong
Jing Dong

Philippe Dugerdil
Reiner Dumke

Schahram Dustdar

E
Christof Ebert
Faezeh Ensan

Onyeka Ezenwoye

F
Behrouz Homayoun Far

Martin S. Feather
Robert Feldt

Norman Fenton
Eduardo B. Fernandez

Todd Fitch
Andres Folleco

Jose Fortes
Renata Fortes

G
Kehan Gao

Alessandro Garcia
Felix Garcia
Carlo Ghezzi
Holger Giese
Itana Gimenes

941

Sebastien Goasguen
Swapna Gokhale

Jeff Gray
Des Greer

Eric Gregoire
Paul Grunbacher

H
Mark Harman
Alan Hartman

Ahmed E. Hassan
Xudong He

Rattikorn Hewett
Mei Hsing

Shihong Huang
Byung-Yeon Hwang

I
Ali Idri
Peter In

J
Clinton Jeffery
Frederic Jouault
Natalia Juristo

K
Audris Kalnins
Sascha Konrad

Gunes Koru
Vinay Kulkarni

L
Mark Last

Jeff Lei
Tao Li

Jennifer Liang
Yingdar Lin
Shih-Hsi Liu

Xiaodong Liu
Yan (Jenny) Liu

Yi Liu
Hakim Lounis

Jian Lu
Zhongyu (Joan) Lu

Heiko Ludwig
Michael R. Lyu

M.
Jose Carlos Maldonado

Antonio Mana
Emilia Mendes
Harald Meyer

Rym Mili
James Miller

Henry Muccini

N
Nachi Nagappan

Martin Neil
Allen Nikora

Elisabetta Di Nitto

O
Mehmet Orgun

P
Manish Parashar

Joontae Park
Witold Pedrycz

Jun Peng
Massimiliano Di Penta

Hoang Pham
Alfonso Pierantonio

R
Rajeev Raje

Sanjay Ranka
Marek Reformat
Robert Reynolds

942

Daniel Rodriguez
George Roussos
Guenther Ruhe

S
Masoud Sadjadi
Ramon Sagarna
Ahmed Salem

Farshad Samimi
Douglas Schmidt

Naeem Seliya
Tony Shan

Yidong Shen
Martin Shepperd

Simon Shim
Michael Shin

George Spanoudakis
Arndt von Staa

Mark Stamp
Nenad Stankovic

Xiao Su
Rajesh Subramanyan

T
Jeff Tian

Juha-Pekka Tolvanen
Genny Tortora

Mark Trakhtenbrot
Laurence Tratt
Peter Troger

T.H. Tse
Bhekisipho Twala

V
Antonio Vallecillo
Michael VanHilst

Silvia Regina Vergilio
Marlon Vieira

W
Qianxiang Wang

Yingxu Wang
Christiane Gresse von Wangenheim

Tim Weitzel
Laurie Williams
Victor Winter

Eric Wong
Franz Wotawa

Ye Wu

X
Baowen Xu
Zhiwei Xu

Y
Hongji Yang
Huiqun Yu

Z
Cui Zhang
Jing Zhang

Zhi-Hua Zhou
Zhinan Zhou

Hong Zhu
Xingquan Zhu
Eugenio Zimeo
Andrea Zisman

943

Authors’ Index

A
M. Abed, 877

Benjamin Aeschliman, 422
Mohsen Afsharchi, 123

Wasif Afzal, 488
Shir Aharon, 448

Fernanda Alencar, 472
Mauricio Alferez, 779

William Allen, 802
Eduardo Santana de Almeida, 655

Hyggo Almeida, 887
Hyggo O. de Almeida, 599

Zaid Altahat, 905
Alexandre Alvaro, 655

Vasco Amaral, 779
Raquel Anaya, 399

Alain April, 60
Fernando Arango, 399

Joao Araujo, 399, 472, 779
Gonzalo Argote-Garcia, 440
Namfon Assawamekin, 460

B
Linda Badri, 103

Mourad Badri, 103
Rami Bahsoon, 375

Xiaoying Bai, 203, 723
Taiseera Al Balushi, 929

Souvik Barat, 625
Ellen Francine Barbosa, 685, 697

Marcio de O. Barros, 149
Ricardo M. Bastos, 185
Javier Belmonte, 129

Ayse Bener, 143
Tejaswitha Bhavsar, 367
Debmalya Biswas, 531

Keith Bock, 422
Harold Boley, 478

Brandon W. Bonds, 54
Marcos R. S. Borges, 773, 820

Harald Brandl, 393

Jens Bruhn, 48
Olivier Buchwalder, 764

Lofton A. Bullard, 73
Michael Burton, 422

C
Edgar S. Calisaya, 773

Maria Luiza M. Campos, 773
Jaelson Castro, 472

Uiratan Cavalcante, 735
A. P. Cavalcanti, 309

M. Cenk Cavusoglu, 333
Martine Ceberio, 861

Victor Rafael Rezende Celestino, 417
Alma Cemerlic, 791

Christine W. Chan, 857
Shi-Kuo Chang, 4

Yeim-Kuan Chang, 351
Ching-Ming Chao, 603

Ned Chapin, 506
Lorena Chavarria-Baez, 363

Shu-Ling Chen, 33
Tsong Yueh Chen, 16

Zhenyu Chen, 494
Harry H. Cheng, 565
Yoonsik Cheon, 861

Radhika Chhabra, 715
Chih-Ping Chu, 351

Peter J. Clarke, 440, 500
Cecilia Claudio, 1

Nelly Condori-Fernandez, 22
Oscar Corcho, 929

Henk Corporaal, 785
Chessman Correa, 67
Antonio Cortes, 861
Evandro Costa, 599

R. Costa, 309
Arnaud Counet, 60

Antonio Marcio Ferreira Crespo, 417
Jesus Cristobal, 667
Xiaofeng Cui, 321

944

D
Jian Dai, 223, 561
Yu Dai, 215, 853

Gargi Dasgupta, 814
Jose Maria N. David, 820

Debzani Deb, 808
Yi Deng, 3

Nima Dezhkam, 26
Oscar Dieste, 769

Oguz Dikenelli, 741
Qin Ding, 381

Yulin Ding, 752
Donna Djordjevich, 565

Jing Dong, 454
Dennis J. Drown, 279
Lucas Drumond, 638
Gengshen Du, 137

Edward B. Duffy, 303
Philippe Dugerdil, 129
Reiner R. Dumke, 918

E
Nina Edelweiss, 525
Raimund Ege, 411

Tzilla Elrad, 581, 905
Maria Claudia F. P. Emer, 357

Wolfgang Emmerich, 375
E. Zeynep Erson, 333

Onyeka Ezenwoye, 649, 814

F
Li Fan, 613

Behrouz H. Far, 123, 466
Pedro Porfirio Muniz Farias, 847

Ali Fatolahi, 619
Robert Feldt, 488

Chenhua Feng, 155
Paula Fernandes, 758

Alfredo Fernandez-Valmayor, 667
Adriana M. C. M. Figueiredo, 173

Olympio C. Silva Filho, 887

Paulo N. Cruz Filho, 197
Todd Fitch, 631

Andres A. Folleco, 73
Liana Fong, 814

Lisandra M. Fontoura, 179
Richard Ford, 802

Renata Pontin de Mattos Fortes, 655
Gordon Fraser, 393, 709

Yujian Fu, 440
M. Muztaba Fuad, 315

Mathias Funk, 785
F. Furtado, 309

G
Suyog Gaidhani, 555

Renata de Matos Galante, 525
Irbis Gallegos, 273
Jerry Gao, 631, 715

Kening Gao, 853
Luis Garcia, 261

Rogerio Eduardo Garcia, 685
Vinicius Cardoso Garcia, 655

Ann Gates, 273
Tom Gelhausen, 691
Blaise Genest, 531

C. Ghezzi, 255
Sudipto Ghosh, 873

Tomas San Feliu Gilabert, 42
Rosario Girardi, 638, 735

Olivier Le Goaer, 387
Seyed Koosha Golmohammadi, 643

Jin-gang Guo, 38

H
Laura Haas, 2
Naji Habra, 60

Jason O. Hallstrom, 303
Klaus Marius Hansen, 345, 893

Lasse Harjumaa, 91
Keqing He, 830

Xiao-yang He, 38
Xudong He, 440

945

Peter Henderson, 327
Yanelis Hernandez, 500

S. Herr, 339
Rattikorn Hewett, 703
Jonathan Hittle, 873

Erika Nina Hohn, 685
Jason Honda, 565

Seongsoo Hong, 573
Lei Hu, 842

Lifeng Hu, 867
Songlin Hu, 209

Wen Shen Huang, 381
Yu-Chun Huang, 33

Sebastian Hudert, 587
Oliver Hummel, 232

Byung-Yeon Hwang, 219

I
Colin J. Ihrig, 4

Magda G. Ilieva, 478
Jin Woo Im, 219

J
Vijayananda Jagannatha, 555

Andrea Janes, 191
Dietmar Jannach, 405

Wenpin Jiao, 250
Ying Jin, 367

Mario Jino, 357

K
Gail Kaiser, 867

Selim Kalayci, 814
Taghi M. Khoshgoftaar, 73, 279, 519

Amir A. Khwaja, 97
Phongphun Kijsanayothin, 703

Beomjin Kim, 422
Tariq M. King, 500

Joseph M. Kizza, 791
Christos Kloukinas, 117

C. Kolski, 877
Sven J. Korner, 691

Nicholas A. Kraft, 54, 85
Uira Kulesza, 745, 779
Vinay Kulkarni, 625

Martin Kunz, 918
Karen Kwok, 631

Gihwon Kwon, 537, 543

L
Jouni Lappalainen, 91

K. Laufer, 339
Jaqueline I. Lavandera, 428

Gary T. Leavens, 861
Bum-Suk Lee, 219
Adriana Leite, 735
Hanna Leskinen, 91

Timothy C. Lethbridge, 619
Huaizhang Li, 561

Juanzi Li, 203
Mengjun Li, 795
Mingshu Li, 561
Weigang Li, 417
Xiaoou Li, 363
Yang Li, 238

Zhoujun Li, 795
Wrihang Roberto Liang, 715

Ying Liang, 209
Huimin Lin, 16

Bin Liu, 830
Chien-Hung Liu, 33

Dapeng Liu, 161
Feng Liu, 795

Guoliang Liu, 238
Jiakun Liu, 573
Jing Liu, 830
Tao Liu, 723

Marta Lopez, 769
Pericles Loucopoulos, 929

Emerson Loureiro, 599, 887
Joel Pinho Lucas, 607

Carlos J. P. de Lucena, 745
Daniel Lucredio, 655

946

Heiko Ludwig, 587

M
Khaled Mahbub, 117
Mark Mahoney, 581

Franz Maier, 935
Jose Carlos Maldonado, 685, 697

Brian A. Malloy, 303
Paolo Maresca, 4
Gerald Marin, 802

Tiago Cordeiro Marques, 847
Santiago Matalonga, 42
Wolfgang Mayer, 935

Philip K. McKinley, 881
D.A. Meedeniya, 371

Hong Mei, 321
S. R. L. Meira, 309

Silvio Romero de Lemos Meira, 655
Steffen Mencke, 918
Jorge Merino, 667
Robert Merkel, 16

Marcio Gurjao Mesquita, 847
Boleslaw Mikolajczak, 267

Ali Mili, 448
Sameer Mohammed, 291

Heidi Moisanen, 91
Alberto L. Moran, 428
Sandro Morasca, 297

Ana Moreira, 399, 472, 779
María N. Moreno, 607

V. Moura, 309
Abdolmajid Mousavi, 466

Arndt Muhlenfeld, 935
Jurgen Munch, 167

Christian Murphy, 867
Leonardo Murta, 67, 758

N
Chaitanya Nadkarni, 448
Elisa Y. Nakagawa, 697

Haruka Nakaoa, 167
Antonio Navarro, 667
Roman Neruda, 569

Julio Cesar Campos Neto, 847
Mihai Nica, 899

Changhai Nie, 484
Camila Nunes, 745
Ingrid Nunes, 745

O
Omar Ochoa, 273

Kleinner Oliveira, 912
Toacy Oliveira, 912

Toacy C. Oliveira, 185
Flavio Oquendo, 244

Michael J. Oudshoorn, 808
Mourad-Chabane Oussalah, 387

P
Fernando Paniagua, 577

Jiyong Park, 573
Sachoun Park, 537, 543

Tauhida Parveen, 111, 802
Oscar Pastor, 22
Mitul Patel, 929

Dennis S. Patrone, 227
Jairo Pava, 500

John Paxton, 808
Witold Pedrycz, 643

Bernhard Peischl, 899
Tu Peng, 454

Eliana B. Pereira, 185
Marcos F. Pereira, 599

A.S.Perera, 371
Angelo Perkusich, 599, 887

Claude Petitpierre, 764
Jose A. Pino, 820

Charnyote Pluempitiwiriyawej, 460
Tytti Pokka, 91

947

Roberto Tom Price, 179
Piet van der Putten, 785

Q
Zawar Qayyum, 244

Bo Qu, 484

R
Damith C. Rajapakse, 923

Bina Ramamurthy, 227
Felicidad Ramos, 769

Bonnie Ray, 155
Abhinay Reddyreddy, 512

Marek Reformat, 643
Marcio de M. Ribeiro, 599

Ana C. Riekstin, 697
Steve Roach, 261, 273

Oscar M. Rodriguez-Elias, 428
Guenther Ruhe, 137

Vasile Rus, 291

S
Deise de Brum Saccol, 525

S. Masoud Sadjadi, 649, 814
Salamah Salamah, 261, 273

Clenio F. Salviano, 173
Farshad A. Samimi, 881

Pedro R. Falcone Sampaio, 929
Sherri M. Sanders, 824
Danilo F. S. Santos, 887

Joao Santos, 779
Kamran Sartipi, 26, 842

Gregor Scheithauer, 12, 549
Andreas Schönberger, 593

Stefan Seedorf, 232
Saddys Segrera, 607

Naeem Seliya, 79, 279
Abdelhak-Djamel Seriai, 387

J. Shafaee, 339
Alan B. Shaffer, 673

Leyuan Shi, 440
Michael E. Shin, 577

Sajjan Shiva, 291
Alberto Sillitti, 191

Carla Silva, 472
Fabio Silva, 638

Nishadi De Silva, 327
Jukka Sirvio, 91
Harvey Siy, 613

John C. Sloan, 519
Darunee Smavatkul, 703

Randy K. Smith, 54
Goncalo Soares, 345

Stephane S. Some, 619
Hui Song, 250

Yicheng Song, 209
M. Soui, 877

Andre Sousa, 779
Bueno Borges de Souza, 417

George Spanoudakis, 117, 661
Mark Stamp, 223

Nenad Stankovic, 434
Rod Strong, 422

Markus Stumptner, 935
Daniel St-Yves, 103
Giancarlo Succi, 191

Yanchun Sun, 250, 321
Thanwadee Sunetnanta, 460
Ramyashree Swamyo, 715

T
Marta S. Tabares, 399

Luca Vetti Tagliati, 679
Luay Tahat, 905

G. Tamburrelli, 255
Dalila Tamzalit, 387
Fatih Tekbacak, 741

Yu-xin Teng, 38
Valentina Ternelli, 4

G. K. Thiruvathukal, 339
Jiuming Tian, 209

Scott Tilley, 111, 802
Andy Tinkham, 111

948

Candemir Toklu, 549
Richard Torkar, 488

Adam Trendowicz, 167
Chi K. Tse, 830

Theocharis Tsigritis, 661
Tugkan Tuglular, 741

Burak Turhan, 143

U
Joseph E. Urban, 97

G. Uster, 877

V
Corina Vela, 273

Silvia Regina Vergilio, 197, 357
Balaji Viswanathan, 814

Aurora Vizcaino, 428
Thomas Vogel, 48

W
Daoming Wang, 16

Qing Wang, 161, 561
Xinghua Wang, 250

Ya-sha Wang, 38
Kevin S. Webb, 85

Jun Wei, 238
Martin Weiglhofer, 709
Claudia Werner, 67, 758

Guido Wirtz, 12, 48, 339, 549, 587, 593
Franz Wotawa, 393, 709, 836, 899

Leon Wu, 867
Weibiao Wu, 79

Yan Wu, 613
Yuxiang Wu, 857

X
Xiaolin Xi, 573
Ma Xiang, 715

Junchao Xiao, 161, 561
Sai Xiao, 321
Lizi Xie, 161

Baowen Xu, 484, 494
Haiping Xu, 512
Zhiwei Xu, 79

Y
Chi-Lu Yang, 351
Lei Yang, 215, 853
Li Yang, 411, 791

Zilan (Nancy) Yang, 123
Xinyu You, 203

Z
Bin Zhang, 215, 853

Cui Zhang, 824
Du Zhang, 219, 285

Weishan Zhang, 345, 893
Xiaofang Zhang, 484, 494

Yan Zhang, 752
Zhoulan Zhang, 4
Yajing Zhao, 454
Cheng Zhong, 123

Bin Zhou, 729
Ti Zhou, 795

Xin Zhou, 155
Hong Zhu, 729

Thomas Zimmermann, 137

949

�

SEKE 2009 Call For Papers
The Twenty-First International Conference on Software Engineering and Knowledge

Engineering

Hyatt Harborside at Logan Int'l Airport, Boston, USA
July 1 - July 3, 2009

Organized by
Knowledge Systems Institute Graduate School

The Twenty-First International Conference on Software Engineering and
Knowledge Engineering (SEKE'09) will be held at the Hyatt Harborside at
Boston's Logan Int'l Airport, Boston, USA, July 1-3, 2009.

The conference aims at bringing together experts in software engineering and
knowledge engineering to discuss on relevant results in either software
engineering or knowledge engineering or both. Special emphasis will be put
on the transference of methods between both domains.

TOPICS
Solicited topics include, but are not limited to:
Agent architectures, ontologies, languages and protocols
Agent-based learning and knowledge discovery
Agent-based software engineering
Autonomic computing
Agent-based auctions and marketplaces
Adaptive Systems
Artificial Intelligence Approaches to Software Engineering
Artificial life and societies
Automated Reasoning
Automated Software Design and Synthesis
Automated Software Specification
Component-Based Software Engineering
Computer-Supported Cooperative Work
Data cleansing and noise reduction
Data streams and incremental mining
Data visualization
E-Commerce Solutions and Applications
Embedded and Ubiquitous Software Engineering
Electronic Commerce
Enterprise Software, Middleware, and Tools
Formal Methods
Human-Computer Interaction
Industry System Experience and Report
Integrity, Security, and Fault Tolerance
Interface agents
Knowledge Acquisition
Knowledge-Based and Expert Systems
Knowledge Representation and Retrieval
Knowledge Engineering Tools and Techniques
Knowledge Visualization
Learning Software Organization
Measurement and Empirical Software Engineering
Middleware for service based systems
Mobile agents
Mobile Commerce Technology and Application Systems
Mobile Systems
Multi-agent systems
Multimedia Applications, Frameworks, and Systems
Multimedia and Hypermedia Software Engineering
Ontologies and Methodologies
Patterns and Frameworks
Pervasive Computing
Process and Workflow Management
Programming Languages and Software Engineering
Program Understanding
Quality of services
Reflection and Metadata Approaches
Reliability
Requirements Engineering
Reverse Engineering
Runtime service management
Secure mobile and multi-agent systems
Semantic web
Service-centric software engineering
Service oriented requirements engineering

Service oriented architectures
Service discovery and composition
Service level agreements (drafting, negotiation, monitoring and management)
Smart Spaces
Soft Computing
Software Architecture
Software Assurance
Software Domain Modeling and Meta-Modeling
Software dependability
Software economics
Software Engineering Case Study and Experience Reports
Software Engineering Decision Support
Software Engineering Tools and Environments
Software Maintenance and Evolution
Software Process Modeling
Software product lines
Software Quality
Software Reuse
Software Safety
Software Security
Swarm intelligence
System Applications and Experience
Time and Knowledge Management Tools
Tutoring, Documentation Systems
Uncertainty Knowledge Management
Validation and Verification
Web and text mining
Web-Based Tools, Applications and Environment
Web-Based Knowledge Management
Web-Based Tools, Systems, and Environments
Web and Data Mining

CONFERENCE SITE (HOTEL INFORMATION)
The SEKE 2009 Conference will be held at the Hyatt Harborside at Boston's
Logan Int'l Airport, Boston, USA. The hotel has made available for these
limited dates (6/30 - 7/4/2009) to SEKE 2009 attendees a discount rate of
$149 US dollars for single/double, not including sales tax.

INFORMATION FOR AUTHORS
Papers must be written in English. An electronic version (Postscript, PDF, or
MS Word format) of the full paper should be submitted using the following
URL: http://conf.ksi.edu/seke09/submit/SubmitPaper.php. Please use Internet
Explorer as the browser. Manuscript must include a 200-word abstract and no
more than 6 pages of IEEE double column text (include figures and
references). Workshop papers should be submitted to the workshops directly.

INFORMATION FOR REVIEWERS
Papers submitted to SEKE'09 will be reviewed electronically. The users
(webmaster, program chair, reviewers...) can login using the following URL:
http://conf.ksi.edu/seke09/review/pass.php.

If you have any questions or run into problems, please send e-mail to:
seke@ksi.edu.

SEKE 2009 Conference Secretariat
Knowledge Systems Institute Graduate School
3420 Main Street
Skokie, IL 60076 USA
Tel: 847-679-3135
Fax: 847-679-3166
E-mail: seke@ksi.edu

IMPORTANT DATES
March 1, 2009 Paper submission due
April 1, 2009 Notification of acceptance
May 1, 2009 Camera-Ready Copy

