Parallel Characterization of Anaerobic Toluene-and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

Yoshikazu Koizumi

John J. Kelly
Loyola University Chicago, Jkelly7@luc.edu

Tatsunori Nakagawa

Hidetoshi Urakawa

Said El Fantroussi

See next page for additional authors

Recommended Citation
Parallel Characterization of Anaerobic Toluene- and Ethylbenzene-Degrading Microbial Consortia by PCR-Denaturing Gradient Gel Electrophoresis, RNA-DNA Membrane Hybridization, and DNA Microarray Technology

Yoshikazu Koizumi,1 John J. Kelly,2 Tatsunori Nakagawa,1 Hidetoshi Urakawa,3 Saïd El-Fantroussi,3 Saleh Al-Muzaini,4 Manabu Fukui,1* Yoshikuni Urushigawa,5 and David A. Stahl3

Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan; Department of Civil Engineering, Northwestern University, Evanston, Illinois 60208-3109; Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-2700; Environmental Sciences Department, Kuwait Institute for Scientific Research, 13109 Safat, Kuwait; and Faculty of System Science and Technology, Akita Prefectural University, 84-4 Tsuchiya-Ebinokuchi, Honjo, Akita 015-0055, Japan

Received 24 January 2002/Accepted 4 April 2002

A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

Although hydrocarbons such as benzene, toluene, ethylbenzene, and the xylene isomers are among the most tractable of environmental contaminants to eliminate by natural or stimulated activities of native microbiota, their degradation is constrained by the natural system. For example, aerobic degradation of hydrocarbons is generally much faster than anoxic processes (13, 25). However, most polluted environments (e.g., soils, sediments, and groundwater) are oxygen limited or anoxic. Although many pathways of aerobic degradation of hydrocarbons are well known, their degradation under anaerobic conditions has been little studied. Thus, the fate of hydrocarbons in anoxic settings is much less predictable. Since pollutant fate is largely controlled by the native microbiota, a more complete understanding of community structure and activity should provide for better prediction and process control. Since most environmental bacteria cannot be cultured by conventional culture methods (6, 29), molecular methods (often based on 16S rRNA) have served to provide a more explicit accounting of the genetic diversity (6).

A variety of genetic fingerprinting and hybridization formats have been developed to resolve sequence diversity and abundance. Fingerprinting methods are often a prelude to more quantitative methods. For example, denaturing gradient gel electrophoresis (DGGE) of PCR-amplified fragments provides for the evaluation of genetic diversity and the monitoring of succession in microbial communities (21, 39). However, it is well recognized that PCR biases compromise quantitative interpretation of amplified products (8, 50) and that variable rRNA gene copy number further complicates this assessment (22). Thus, more direct methods such as quantitative membrane hybridization of total 16S rRNA extracted from environmental samples provide a better estimate of relative abundance with good sensitivity (45, 48, 49, 55). However, available formats cannot provide for intensive monitoring.

Recently, DNA microarrays have been developed for medical and diagnostic applications (e.g., detection of single-nucleotide polymorphism, sequencing by hybridization with oligonucleotide in a matrix, and evaluation of gene expression) (14, 53, 59, 63). With this format, thousands of genes can be simultaneously assessed by using a large set of probes miniaturized on one glass slide. This is also an ideal format to assess the sequence diversity of 16S rRNA in natural environmental samples (27).
Sulfate-reducing bacteria are thought to play an important role in degrading hydrocarbons in marine environments because the concentration of sulfate in seawater is very high (28 mM) (31). It is supported by the enrichment and isolation of hydrocarbon-degrading organisms under sulfate-reducing conditions (9, 10, 11, 24, 28, 42, 46, 47, 51). However, their isolation from anaerobic consortia is usually difficult, presumably because they often depend on syntrophic associations (42). Therefore, studies of their natural diversity and abundance in relationship to hydrocarbon degradation should be greatly facilitated by application of microarray technology. The aim of this study is the parallel detection of specific 16S rRNAs in microbial consortia by using the novel microarray technique.

MATERIALS AND METHODS

Microorganisms. Desulfobacter latus (DSM 3381), Desulfoversicina variabilis (DSM 2060), Desulfobulbus anilini (ATCC 49792), and Desulfuvibrio africans (ATCC 19996) were used as reference strains in this study. They were cultured with the sulfate-reduced bicarbonate-buffered defined medium described by Widdel and Bak (61). The medium for seawater and freshwater contained 20 and 0.4 mM of phosphate (pH 6.8) and 0.8 ml of 50 mM potassium phosphate (pH 6.8), total nucleic acids were recovered in two 1.5-ml microtubes by eluting twice with 0.8 ml of 300 mM potassium phosphate, pH 6.8. Salts and humic contaminants were removed from the elution with a 2.5-ml Sephadex G-75 spin column (38), and the nucleic acid was collected by isopropyl alcohol precipitation.

DGGE analysis. PCR for DGGE analysis was performed as described by Muyzer et al. (40) with the primer set of probe EUB338 (4) as a general primer with GC-clamp (338f, 5′-CCGGCCGCGCCGCGCCGTGCTCGG CCGCCCCCGCGCG-3′). As a reverse primer, 907r (5) was used. PCR-amplified 16S rDNA fragments were analyzed by DGGE, followed by sequencing. DGGE was performed with a D-gene or D-code system (Bio-Rad Laboratories, Hercules, Calif.), as described previously (39, 40). The denaturing gradient ranged from 20 to 60%. Approximately 500 ng of PCR products and 100 ng of reamplified DNA sequences were electrophoretically fractionated for 4 h at a constant voltage of 300 V and a temperature of 60°C.

RNA sample preparation. For native RNA from microorganisms, total RNA was extracted from cell pellets by the low-pH bead-beating method (37, 55). For recovery of native RNA from sediments, extraction and purification of nucleic acids were performed by using the DNeasy kit method described above. DNA was degraded by using DNase I as previously described (38). RNA was recovered by PCI extraction followed by ethanol precipitation and isopropyl alcohol precipitation.

In vitro transcription was used to produce 16S rRNA from the major DGGE bands and from genomic DNA of individual isolates. PCR amplification was carried out with the primer pair of T7 promoter-conjugated 338f (5′-TGAATT GTATAACGACTCATATAGGGCGAACATC-3′) and 907r or T7 promoter-conjugated BACT1IF (32) and S-D-Bact-1512-a-A-16 (23) in a thermal cycler (Thermo Hybaid US, Franklin, Mass.) in 100-μl aliquots under the following conditions. Each tube contained 1× PCR buffer, deoxynucleoside triphosphate mixture (2.5 mM each), 25 μM each primer, 5 U of T7 DNA polymerase (Amersham Pharmacia Biotech Inc., Piscataway, N.J.) μl−1, and 100 ng of template DNA. An initial denaturation step of 3 min at 95°C was followed by 30 cycles of 30 s at 95°C, 30 s at 55°C, and 1 min at 72°C, then 5 min at 72°C. RNA was transcribed from these PCR-generated templates by using a commercial RNA transcription kit (New England Bio Labs Inc., Beverly, Mass.) in 150-μl aliquots according to the manufacturer’s protocol.

Oligonucleotide probe design and determination of washing temperature. Four oligonucleotide probes were designed for the major DGGE bands by using the Probe_Design tool of the ARB software package (O. Strunk, O. Gross, B. Reichel, M. May, H. Herrmann, N. Stucken, B. Nonhoff, M. Lenke, A. Ginhart, A. Vilib, T. Ludwig, A. Bode, K.-H. Schleifer, and W. Ludwig, 1998, http://www.mikro.biologie.tum-muenchen.de/pub/ARB). Since probe S−Tseda-0641-a-A-20 had self-complementarity near the termini, an alternative probe (probe S−Tseda-0644-a-A-19) was designed (Table 1). The Probe_Design program provided with the Ribosomal Database Project II (35) and BLAST search (3) were both used to evaluate probe specificity. The Tm (temperature of dissociation) values and the specificities of the oligonucleotide probes were assessed by the general method described by Zheng et al. (64). All oligonucleotide probes were synthesized with an amino linker at the 5′ end by Operon Inc. (Alameda, Calif.). The amino linker is used for immobilization of the oligonucleotide probes within the DNA microarray.

Quantitative membrane hybridization. For quantitative membrane hybridization, denatured RNA samples and a dilution series of pure culture RNA were applied in triplicate to nylon membranes (Magna Charge nylon membrane; Micron Separation Inc., Westboro, Mass.), and hybridization was performed as described previously (48, 55, 64). The concentrations of all samples and reference RNAs were normalized by using the probe S−Univ-907-a-A-22. A known concentration of Escherichia coli native RNA determined spectrophotometrically was used for normalization. The hybridization signals were measured by using a PhosphorImager (Storm 860; Molecular Dynamics, Sunnyvale, Calif.) and analyzed with the ImageQuant software package (Molecular Dynamics). The results were expressed as the fraction of target 16S rRNA relative to total eubacterial rRNA quantified by using probe S-D-Bact-0338-a-A-18.
and incubation at room temperature for 20 min.

The ribosyl moiety was conducted by addition of 6.5 ml of shrimp alkaline phosphatase buffer (Promega, Madison, Wis.) and heating at 37 °C for 40 min. Phosphatase treatment was performed by addition of 3 ml of 10% alkaline phosphatase buffer (Promega, Madison, Wis.) and 0.2 ml of shrimp alkaline phosphatase (1 U ml⁻¹) (Promega) and heating at 37°C for 30 min. Oxidation of the 3'-end ribosyl moiety was conducted by addition of 6.5 ml of 100 mM sodium periodate and incubation at room temperature for 20 min.

The DNA microarrays used in this study were fabricated by addition of 6.7 ml of nuclease-free water (43). The microarray and image analysis was carried out by addition of 3.5 µl of 100 mM lissamine rhodamine B ethylenediamine (Molecular Probes, Eugene, Oreg.) and 1.65 µl of 1 M HEPES (pH 7.5) and heating at 37°C for 1 h. Reduction of the Schiff base was conducted by addition of 6.7 µl of 200 mM sodium cyanoborohydride and incubation at room temperature for 30 min. Labeled RNA was precipitated by addition of 15 volumes of 2% lithium perchlorate in acetone and chilling at −20°C for 20 min. After centrifugation at 14,000 rpm for 5 min, RNA pellets were washed twice with acetone, dried at 55°C for 10 min, and suspended in 20 µl of nuclease-free water (43).

DNA microarray fabrication. The DNA microarrays used in this study consisted of miniaturized oligonucleotide arrays in which oligonucleotide probes were individually immobilized within small polyacrylamide gel pads affixed to a glass slide. A matrix of glass-immobilized gel elements (100 by 100 by 20 µm each) spaced 100 µm apart was manufactured with photopolymerization (63) and activated as described previously (33). We have incorporated four new oligonucleotide arrays in which oligonucleotide probes were individually immobilized within small polyacrylamide gel pads after photopolymerization (63) and activated as described previously (33). We have incorporated four new oligonucleotide arrays in which oligonucleotide probes were individually immobilized within small polyacrylamide gel pads after photopolymerization (63) and activated as described previously (33). We have incorporated four new oligonucleotide arrays in which oligonucleotide probes were individually immobilized within small polyacrylamide gel pads after photopolymerization (63) and activated as described previously (33). We have incorporated four new oligonucleotide arrays in which oligonucleotide probes were individually immobilized within small polyacrylamide gel pads after photopolymerization (63) and activated as described previously (33). We have incorporated four new oligonucleotide arrays in which oligonucleotide probes were individually immobilized within small polyacrylamide gel pads after photopolymerization (63) and activated as described previously (33).
hybridization solution were removed, the microarray was soaked in warm washing buffer (20 mM Tris-HCl buffer [pH 8.0], 10 mM NaCl, and 5 mM EDTA [pH 8.0]) at 46 °C for 5 min. The microarray was then immediately covered with a chamber filled with 100 µl of washing buffer.

The signal of each probe hybridized with fragmented and labeled rRNA was detected by using a custom-made epi-fluorescence microscope equipped with a charge-coupled device camera (Princeton Instruments, Princeton, N.J.), and the intensity of each signal was measured at room temperature with WinView software (Princeton Instruments). Exposure times were in the range of 0.1 to 1 s, depending on the signal intensity. When melting curves were determined, the microarray was washed at room temperature for 1 min two times and then covered with the chamber filled with 100 µl of washing buffer. The temperature of the microscope slide was controlled by a thermotable mounted on a stage of the epi-fluorescence microscope and connected with a thermoelectric temperature controller (LFI-3751; Wavelength Electronics, Inc., Bozeman, Mont.) and a waterbath (Cole Parmer Instruments Co., Chicago, Ill.). Melting profiles for all probes were monitored and recorded at 2°C intervals from 10 to 70°C by increasing the temperature at 1°C per min.

RESULTS AND DISCUSSION

Sulfide production and hydrocarbon degradation in enrichments. We enriched the marine sediment, which was obtained from Tokyo Bay, by adding toluene (2% [vol/vol] in the carrier phase) or ethylbenzene (2% [vol/vol] in the carrier phase) as a sole electron donor and carbon source under sulfate-reducing, anaerobic conditions. The sulfide production of these enrichment cultures was monitored with respect to growth on hydrocarbon. In the toluene-degrading consortium (TDC), the amount of toluene decreased from 1.53 to 0.72 mmol, associated with 2.92 mmol of sulfide production after 90 days of incubation. In the ethylbenzene-degrading consortium (EDC), the concentration of sulfide increased from 0.39 mmol on day 15 to 1.63 mmol on day 49, then reached 2.14 mmol after 82 days. The amount of ethylbenzene decreased from 0.95 mmol on day 5 to 0.38 mmol on day 82. Attempts to isolate pure cultures from TDC and EDC have so far been unsuccessful.

DGGE analysis and sequencing. DGGE patterns of TDC at 30 days, EDC at 30 and 60 days, and oil-contaminated sediment are shown in Fig. 1 (lanes 2, 5, 6, and 7, respectively). A few conspicuous bands (T-1 in TDC and E-1 and E-2 in EDC) were observed on the DGGE gel. This result indicated that specific microorganisms were selectively enriched. The DGGE pattern of the DNA amplicon from the oil-contaminated sediment was faint, and no conspicuous bands were detected. The bands corresponding to T-1, E-1, and E-2 were not visible in the sediment sample. DNA fragments were excised from the major bands on the DGGE gel (T-1, E-1, and E-2) and reamplified (Fig. 1, lanes 1, 3, and 4, respectively). The sequences of these 16S rRNA fragments (338 to 927, based on *E. coli* numbering) were determined. The sequence of T-1 was

![FIG. 1. DGGE analysis of PCR-amplified 16S rDNA fragments obtained from TDC and EDC, microbial populations in an oil-contaminated sediment at the coastal area of Kuwait, and the major DGGE bands. Inverted image of the DGGE gel stained by ethidium bromide. Lane 1, reamplified band T-1; lane 2, TDC (30 days); lane 3, reamplified band E-1; lane 4, reamplified band E-2; lane 5, EDC (30 days); lane 6, EDC (60 days); lane 7, Kuwaiti sediment. 16S rDNA fragments of TDC, EDC, and oil-contaminated sediment were obtained by PCR amplification of genomic DNA (lanes 2, 5, 6, and 7). Reproducibility of DGGE analysis was confirmed by three replications of PCR.](image-url)
most similar to that of strain oXyS1 (99.8%), which originated from the water phase of an oil tank (28). Strain oXyS1 is affiliated with a relatively deep-branching lineage within the family Desulfobacteriaceae. Growth on toluene was also observed for strain oXyS1.

Even though utilization of ethylbenzene has not previously been detected under mesophilic sulfate-reducing conditions (47, 51), we successfully enriched for sulfate-reducing bacteria by using ethylbenzene as a sole energy and carbon source. DGGE analysis followed by sequencing revealed that the sequence of E-2 was most similar to that of mXyS1 (98.0%), affiliated with the family Desulfobacteriaceae. mXyS1 is a novel type of marine sulfate-reducing bacterium capable of complete anaerobic degradation of m-xylene (28). The sequence of E-1 showed highest similarity (84.6%) to an uncultured soil bacterium, PBS-21, loosely affiliated with a deep-branching lineage within the order Spirochaetales.

These results are consistent with the finding that all known sulfate-reducing bacteria enriched on aromatic compounds are affiliated with the family Desulfobacteriaceae (47). Moreover, Phelps et al. (42) reported that 4 of 12 clones isolated from a sulfate-reducing consortium enriched with benzene belonged to the family Desulfobacteriaceae.

quantitative membrane hybridization. In order to determine the abundance of the putative hydrocarbon-degrading bacteria revealed by the DGGE analysis, we designed four oligonucleotide probes based on the sequences of the major DGGE bands (Table 1). In addition, probes S-D-Bact-0338-a-A-18, S-F-Dsv-0687-a-A-16, and S+-Dsb-0804-a-a-18 were also used. Probe S+-Univ-0907-a-A-22 was used for normalization. The final washing temperature (T_w) for each probe (Table 1) was empirically determined by a temperature of dissociation (T_d) study and specificity study as previously described by Zheng et al. (63). Normalized T_d curves of these probes were obtained with high reproducibility (Fig. 2). Table 1 lists the targets, the sequence alignments, and the amount of 32P-labeled probes dissociated at each specific wash condition (T_w). T_w for probe S+-Univ-0907-a-A-22 corresponded to the temperature at which an almost equal percentage of the duplex between any 16S rRNA target and probe remained intact, but was higher than the temperature causing nonspecific binding.

Probes S+-Tsrda-0641-a-A-20 and S+-Tsrda-0644-a-A-19, which target the same region of the 16S rRNA, showed different melting curves. Also, the initial signal intensity of probe S+-Tsrda-0641-a-A-20 was 100 times lower than that of probe S+-Tsrda-0644-a-A-19. This difference was attributed to self-complementarity (Table 1). For probe S+-Tsrda-0641-a-A-20, the T_d value for the nontarget organism containing one mismatch was only 2°C lower than that for the target organism (Fig. 2A). Since a T_w achieving complete discrimination between the target and the nontarget containing one mismatch would reduce signal intensity by 90%, 58°C was selected as the T_w. Therefore, the signal of single-mismatch nontargets would be slightly above background (96% washed off) (Table 1).
For probe S-\(\text{Tsrd}_{-1}\)-Tsrda-0644-a-A-19, the \(T_d\) values of the target organism and the nontarget organism with one mismatch were not different. However, the melting curve of the duplex between S-\(\text{Tsrd}_{-1}\)-Tsrda-0644-a-A-19 and the target (T-1) had a shoulder at around 53°C (Fig. 2B). Due to this shoulder, it was possible to determine a \(T_w\) that would result in reasonable hybridization signals. Probes S-\(\text{Tsrd}_{-1}\)-Edn-0656-a-A-18 and S-\(\text{Tsrd}_{-1}\)-Edsrb-0656-a-A-19 showed ideal melting curves (Fig. 2C and D). Their \(T_d\) values were 66 and 63°C, respectively (Table 1). These probes could distinguish between the target organisms and the nontarget reference organisms with one or more mismatches by washing at their respective \(T_d\) values.

Figure 3 displays the relative fraction of 16S rRNA extracted directly from microbial populations comprising the toluene (TDC)- and ethylbenzene (EDC)-degrading consortia and the oil-contaminated sediment determined by quantitative membrane hybridization. This analysis revealed that T-1 and E-1 and E-2 were members of the TDC and EDC, respectively. This was consistent with the results of DGGE analysis. The signals of the probes for T-1 were negligible in EDC and those for T-1, E-1, and E-2 were negligible in the oil-contaminated sediment.

Since the dissimilatory, gram-negative sulfate-reducing bacteria can be roughly divided into the families \textit{Desulfovibrionaceae} and \textit{Desulfobacteriaceae} (18), we used general probes for these groups to encompass most of the gram-negative sulfate-reducing bacteria mesophilic group. The signals of probe S-F-Dsv-0687-a-A-16 accounted for 11.1 to 14.4% of total eubacterial 16S rRNA in all samples. However, this probe hybridizes to some species of \textit{Geobacteriaceae} (20), and the contribution of these types in the samples is unknown. The group hybridizing with probe S-\(\text{Tsrd}_{-1}\)-Dsb-0804-a-A-18 was abundant in all samples, consistent with the previously reported finding that most aromatic compound-degrading bacteria belong to the family \textit{Desulfobacteriaceae} (42, 47).

In TDC, probes S-\(\text{Tsrd}_{-1}\)-Tsrda-0641-a-A-20 and S-\(\text{Tsrd}_{-1}\)-Tsrda-0644-a-A-19 (targeting T-1) gave positive signals and accounted for 16.3 and 19.2% of total 16S rRNA, respectively. There were no significant differences between the results with probes S-\(\text{Tsrd}_{-1}\)-Tsrda-0641-a-A-20 and S-\(\text{Tsrd}_{-1}\)-Tsrda-0644-a-A-19 in any of the samples. In EDC, the signal intensity of probe S-\(\text{Tsrd}_{-1}\)-Edn-0656-a-A-18 increased markedly from 7.2% on day 30 to 19.0% on day 60. The signal with probe S-\(\text{Tsrd}_{-1}\)-Edsrb-0656-a-A-19 did not change significantly, from 41.4% to 39.1%, during this period. The \textit{Desulfobacter} group was not more abundant in EDC than in TDC. McMahon et al. (36) demonstrated the difference caused by the use of in vitro-transcribed and native RNAs for membrane hybridization. They concluded that transcribed RNA could be used to determine \(T_d\) values because differences were relatively small. They also mentioned that when in vitro-transcribed rRNA was used as a standard for quantitative hybridization, the population was consistently underestimated. The ratio of T-1, E-1, and E-2 to total bacteria might be underestimated because we used transcribed RNA as a stan-
The RNA transcribed from DGGE fragments hybridized with the complementary probes under the washing condition defined above (Fig. 5). Universal and eubacterial probes gave positive signals for all samples. Since the RNAs of DGGE bands were transcribed from the DNA fragments amplified with the 338F-907r primer pair, probes S-\textasciitilde-Univ-1390-a-A-18 and S-D-Bact-0927-a-A-17 did not hybridize for lack of target sequences. In contrast, the failure of probe S-F-Dsv-0687-a-A-16 to hybridize is attributed to the lower stability of this short probe under the conditions used in this study (43). The effect of probe length and sequence composition on DNA microarray hybridization is under investigation.

This microarray was then used to characterize enrichment and environmental samples (Fig. 6). The in vitro-transcribed RNA was used to increase the sensitivity of analysis for some samples. The hybridization of the TDC sample with native and in vitro-transcribed RNAs showed comparable patterns, although the native RNA (including 23S and 5S rRNA) generated a higher background than in vitro-transcribed RNA (Fig. 6A and B). Since EDC and the oil-contaminated sediment generally did not yield sufficient native RNA to hybridize to the DNA microarray, transcribed RNA was used to amplify the signal. Each yielded characteristic patterns. The equal variance and significant differences of signal intensities between specific probes and blank were verified by two-tailed F test ([3, 19; 0.005]) and t test ([22, 0.01]), respectively. Probes S-\textasciitilde-Tsrda-0641-a-A-20 and S-\textasciitilde-Tsrda-0644-a-A-19 gave positive signals for the TDC sample (P < 0.01) (Fig. 6A and B) and probes S-\textasciitilde-Edn-0656-a-A-18 and S-\textasciitilde-Esrb-0656-a-A-19 gave positive signals for EDC (P < 0.01) (Fig. 6C and D). For the Kuwaiti sediment, only the universal and eubacterial probes gave positive signals (P < 0.01) (Fig. 6E). Although the Desulfo bacter group (hybridized by probe S-\textasciitilde-Dsb-0804-a-A-18) accounted for more than 50% of bacterial 16S rRNA as revealed by membrane hybridization (Fig. 3), the signal was not detected (Fig. 6). Possible reasons for this observation include the low T_D value of probe S-\textasciitilde-Dsb-0804-a-A-18 and the length of the transcribed target RNA used in the enrichment and environmental samples.

The T_D value of probe S-\textasciitilde-Dsb-0804-a-A-18 was the lowest of all the probes used in this study (Table 1). This means a lower affinity between the probe and target RNA. In addition, probe specificity on the DNA microarray was checked by using short fragments (338 to 927, E. coli numbering) (Fig. 5), whereas almost full-length transcribed 16S rRNA (11 to 1512, E. coli numbering) was used to compare with native intact 16S rRNA when we applied the DNA microarray to enrichment and environmental samples (Fig. 6). We suggest that the fragmentation of long transcribed 16S rRNA molecules may have been less efficient than for short fragments and that the target site of probe S-\textasciitilde-Dsb-0804-a-A-18 may have been more difficult to fragment than other regions due to its three-dimensional structure. We need further optimization to design good probes for DNA microarray hybridization.

Table 2. Probe names, number of mismatches, and locations on DNA microarray

<table>
<thead>
<tr>
<th>Probe</th>
<th>No. of mismatches</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
<td>E1</td>
</tr>
<tr>
<td>S-\textasciitilde-Tsrda-0644-a-A-19</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>S-\textasciitilde-Tsrda-0641-a-A-20</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>S-\textasciitilde-Edn-0656-a-A-18</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>S-\textasciitilde-Esrb-0656-a-A-19</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>S-\textasciitilde-Dsb-0804-a-A-18</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>S-F-Dsv-0687-a-A-16</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>S-D-Bact-0338-a-A-18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S-D-Bact-0927-a-A-17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S-\textasciitilde-Univ-0907-a-A-22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-\textasciitilde-Univ-1390-a-A-18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* — transcribed rRNA (338 to 927, E. coli numbering) T-1, E-1, and E-2 do not contain the target sites.
The unambiguous analysis of natural systems requires an understanding of mismatch discrimination. In particular, single-mismatch discrimination is often difficult to achieve (30, 48, 55, 64). Both probes S-\(\text{Tsrda-0644-a-A-19}\) and S-\(\text{Tsrda-0641-a-A-20}\) contain one U-G mismatch to \(D.\ variabilis\) located 3 and 6 bases from the 5' end of the probes, respectively (Table 1). Although the target with one mismatch could not be completely eliminated, the melting profile of the one-mismatch

![Image of DNA microarray data]

FIG. 4. DNA microarray temperature-of-dissociation study for transcribed RNA fragments derived from DGGE bands on DNA microarrays. Numbers in parentheses indicate the number of mismatches between probe and target sequences. All elution curves represent the means of four replicate experiments on one chip. Hybridization to RNA containing more than three mismatches could not be detected at the beginning of the melting curve except for the duplex of S-\(\text{Edsrb-0656-a-A-19}\) and T-1. A washing temperature of 46°C (vertical line) was used to achieve suitable mismatch discrimination.

![Image of hybridization data]

FIG. 5. Hybridization of lissamine rhodamine-labeled RNA to DNA microarray. RNAs (338 to 927, \(E.\ coli\) numbering) were transcribed from PCR-amplified 16S rDNA fragments from the DGGE gel, fragmented with magnesium, and labeled with lissamine rhodamine. Probes, their locations, and the number of mismatches between each probe and the RNA are shown in Table 2. The DNA microarray was hybridized to in vitro-transcribed 16S rRNA fragments from bands T-1, E-1, and E-2, shown in panels T-1, E-1, and E-2, respectively.
FIG. 6. Results of DNA microarray hybridization with samples of TDC, EDC, and oil-contaminated sediment from the coastal area of Kuwait. Probes, their locations, and the number of mismatches between each probe and the RNA are shown in Table 2. RNA was prepared by in vitro transcription of 16S rDNA fragments (E. coli numbering) PCR amplified from genomic DNA. Native RNA was also used for one TDC sample. Negative images of hybridization with a DNA microarray and fluorescence signals for each probe are presented.

(A) Negative images of hybridization with a DNA microarray and fluorescence signals for each probe are presented.

(B) Negative images of hybridization with a DNA microarray and fluorescence signals for each probe are presented.

(C) Negative images of hybridization with a DNA microarray and fluorescence signals for each probe are presented.

(D) Negative images of hybridization with a DNA microarray and fluorescence signals for each probe are presented.

(E) Negative images of hybridization with a DNA microarray and fluorescence signals for each probe are presented.

Fluorescence intensities were quantified by using WinView and calculated from four replications of each probe on one chip. SSU, small subunit.
duplex differed from that of the perfect-match duplex. The \(T_d \) values for the perfect-match duplexes were 42.0 and 44.0°C, 3.5 and 5.5°C higher than those for the one-mismatch duplexes, respectively. This could provide a basis to distinguish between perfect-match and single-mismatch duplexes by further optimization of hybridization and washing condition (e.g., formamide and salt concentration in buffer) (57). Alternatively, monitoring the dissociation kinetics of all array elements simultaneously could also provide improved discrimination.

DNA microarrays have been used mainly as a tool to determine microbial species (7, 15, 27, 34) and to simultaneously could also provide improved discrimination. Monitoring the dissociation kinetics of all array elements simultaneously of hybridization and washing condition (e.g., formamide and salt concentration in buffer) (57). Alternatively, monitoring the dissociation kinetics of all array elements simultaneously could also provide improved discrimination.

This work was supported by grants from the New Energy and Industrial Technology Development Organization (NEDO) and the Ministry of Education, Culture, Sports, Science and Technology, Japan (no. 12440219) to M.F. and grants from NASA and DARPA to D.A.S.

REFERENCES

