New Cyclophanes as Supramolecular Scaffolds: The Synthesis of Tribenzo-1,4,7-Triazacyclononatriene.

Andria M. Panagopoulos

Loyola University Chicago

Recommended Citation

https://ecommons.luc.edu/luc_diss/88

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Copyright © 2010 Andria M. Panagopoulos
ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor, Daniel P. Becker, Ph.D. for all his support and guidance throughout the years. I have learned so much from you, not only about chemistry, but about myself and for that I thank you.

I would also like to thank my friends and family. You guys have stood by my side, encouraged me and supported me. I could not have completed this without your love and support. Thank you.
For Papa
I wish you were here.

For My Family,
Thank you.
Insanity – Doing the same thing over and over again and expecting different results.

- Albert Einstein
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF SCHEMES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1 - AN INTRODUCTION TO SUPRAMOLECULAR CHEMISTRY, CTV AND N3-CTV</td>
<td>1</td>
</tr>
<tr>
<td>Supramolecular Chemistry</td>
<td>1</td>
</tr>
<tr>
<td>Cyclophanes</td>
<td>2</td>
</tr>
<tr>
<td>Cyclotrimeratrylene (CTV)</td>
<td>4</td>
</tr>
<tr>
<td>1,4,7-Triazacyclononane (TACN)</td>
<td>7</td>
</tr>
<tr>
<td>Tribenzo-1,4,7-Triazacyclonatriene (N3-CTV)</td>
<td>9</td>
</tr>
<tr>
<td>CHAPTER 2 – ATTEMPTED CONVERGENT SYNTHESIS OF N3-CTV</td>
<td>12</td>
</tr>
<tr>
<td>Convergent Trimerization</td>
<td>15</td>
</tr>
<tr>
<td>[2x1] Dihalide Convergent Synthesis</td>
<td>22</td>
</tr>
<tr>
<td>[2x1] Diamino Convergent Synthesis</td>
<td>25</td>
</tr>
<tr>
<td>Templated Convergent Synthesis</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER 3 – LINEAR SYNTHETIC STRATEGY AND THE FORMATION OF THE DESIRED</td>
<td>31</td>
</tr>
<tr>
<td>N3-CTV</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 4 – BENZYNE CLOSURE</td>
<td>50</td>
</tr>
<tr>
<td>CHAPTER 5 – DERIVATIVES OF N3-CTV AND FUTURE WORK</td>
<td>69</td>
</tr>
<tr>
<td>Demethylation</td>
<td>69</td>
</tr>
<tr>
<td>Apex Functionalization and Metal Coordination</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 6 – EXPERIMENTAL</td>
<td>78</td>
</tr>
<tr>
<td>APPENDIX A – SUPPLEMENTAL DATA</td>
<td>104</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>210</td>
</tr>
<tr>
<td>VITA</td>
<td>217</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Look at the Convergent Trimerization</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Synthesis of Triaza[1,3]meta Cyclophane Reported by Tanaka</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>Attempted Trimerization of o-Iodoaniline</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>Convergent Trimerization of N-Methyl-2-Bromoaniline</td>
<td>21</td>
</tr>
<tr>
<td>5</td>
<td>Two Possible [2x1] Convergent Syntheses</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>[2x1] Convergent Synthesis of 2,2’Dibromodiphenylamine</td>
<td>25</td>
</tr>
<tr>
<td>7</td>
<td>Synthesis of 2,2’-Diaminodiphenylamine</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>Reduction of N-Methyl-2,2’-Dinitrodiphenylamine</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Attempted Direct Synthesis of the Carbon-Capped N3-CTV</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>Linear Retrosynthetic Approach to N3-CTV</td>
<td>31</td>
</tr>
<tr>
<td>11</td>
<td>Four Possible Synthetic Strategies Beginning with Chlorine and Building Towards Aniline</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>Four Possible Synthetic Strategies Beginning with Aniline and Building Towards Chlorine</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>Synthesis of Compound 17 (Intermediate A)</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>Methylation and Reduction of Intermediate A</td>
<td>36</td>
</tr>
<tr>
<td>15</td>
<td>Synthesis of Compound 20, Triarylamine B</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>Methylation and Reduction of Triarylamine Derivative B</td>
<td>41</td>
</tr>
</tbody>
</table>
Scheme 17 – Complete Linear Synthesis of N,N’-Dimethyl N3-CTV 48
Scheme 18 – Attempted Synthesis of N3-CTV with Bromine Substituent 49
Scheme 19 – Formation of a Benzyne Intermediate Through a Zwitterion 51
Scheme 20 – Proposed Mechanism of the Benzyne Cyclization 53
Scheme 21 – Formation of the Methyl-Shifted Phenazine Derivative 54
Scheme 22 – Protection of the Internal Nitrogen with n-Butyl Bromide 57
Scheme 23 – Proposed Mechanism for the Formation of the 6-membered Phenazine Derivative From the N,N’-Dimethyl Derivative 58
Scheme 24 – Linear Synthesis of the Fluorinated Triarylamine 32 60
Scheme 25 – Synthesis of Compounds 34 Fluoro-N-Methyl-N’Butyl Substrate 61
Scheme 26 – Proposed Mechanism for the Formation of the Butyl-Shifted Phenazine Derivative 62
Scheme 27 – Intermolecular Double-Demethylation 63
Scheme 28 – Attempted Dealkylation of the Butyl Protecting Group in the Absence of a Halogen 64
Scheme 29 – Intermolecular vs. Intramolecular Dealkylation 66
Scheme 30 – Proposed Labeling Experiment to Determine if the Alkyl-Shift is Intra- or Intermolecular 67
Scheme 31 – Attempted Demethylation of N,N’-Dimethyl N3-CTV 70
Scheme 32 – Synthesis of the Trimethyl N3-CTV Derivative 72
Scheme 33 – Proposed Electrophilic Aromatic Substitution of N3-CTV 75
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crown and Saddle CTV</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Crown and Saddle CTV-oxime Derivatives</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Heterocyclic CTV Derivatives</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>Structure of TACN and Carbon-Capped TACN Derivative</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Structure of C-NETA</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Structure of Target Molecule - N3-CTV</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Synthetic Approaches to N3-CTV</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>Oxidative Addition/Reductive Elimination Mechanism</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>Derivatives of Compound 22a</td>
<td>42</td>
</tr>
<tr>
<td>10</td>
<td>N,N-Dimethyl N3-CTV</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>X-ray Structure of N,N-Dimethyl N3-CTV with Atom Labels, Thermal Ellipsoids</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>are at the 50% Probability Level</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Crystal Structure of the Methyl-Shifted Phenazine Derivative HCl Salt</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>Possible Structure of Lithium-Ligated Species</td>
<td>71</td>
</tr>
<tr>
<td>14</td>
<td>Structures of Gd-Complexing MRI Contrast Agents</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>Structure of Dimeric Molecular Tweezers</td>
<td>76</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1 – Attempted Convergent Trimerization Utilizing Buchwald-Hartwig Pd-Catalyzed Cross-Coupling Conditions 18

Table 2 – Attempted Convergent Trimerization Utilizing Ullmann Cu-Catalyzed Cross-Coupling Conditions 20

Table 3 – Attempted [2x1] Convergent Synthesis of 2,2’-Dibromodiphenylamine and o-Phenylenediamine 24

Table 4 – Attempted [2x1] Convergent Synthesis of 2,2’-Diaminodiphenylamine and N-Methyl-2,2’-Diaminodiphenylamine 28

Table 5 – Synthesis of Diphenylamine Derivatives, Intermediate A 34

Table 6 – Attempted Reductions of Intermediate A 37

Table 7 – Synthetic Strategies for the Formation of Triarylamine B 39

Table 8 – Attempted Final Cyclization Utilizing Buchwald-Hartwig Conditions 43

Table 9 – Attempted Benzyne Cyclization to N3-CTV 65
LIST OF ABBREVIATIONS

N3-CTV – tribenzo-1,4,7-triazacyclononatriene

CTV – cyclotheratrylene

DMSO – dimethyl sulfoxide

TACN – 1,4,7-triazacyclononane

NMR – nuclear magnetic resonance

MRI – magnetic resonance imaging

Ca$^{2+}$ - calcium ion

K$^+$ - potassium ion

Lu (III) – lutetium

Bi (III) – bismuth

RIT – radioimmunotherapy

DNA – deoxyribonucleic acid

Cu (II) – copper(II)

Pd(dba)$_2$ – bis(dibenzylideneacetone)palladium(0)

BINAP – 2,2’-bis(diphenylphosphino)-1,1’binaphthyl
Pd(OAc)$_2$ – palladium(II) acetate
P(t-Bu)$_3$ – tri-t-butylphosphine
NaOtBu – sodium tert-butoxide
KOtBu – Potassium tert-Butoxide
CuI – copper(I) iodide
K$_2$CO$_3$ – potassium carbonate
Cs$_2$CO$_3$ – cesium carbonate
Na$_2$CO$_3$ – sodium carbonate
Na$_2$SO$_4$ – sodium sulfate
THF – tetrahydrofuran
MeI – iodomethane
n-BuLi – n-butyllithium
TLC – thin layer chromatography
SM – starting material
rt – room temperature (25°C)
H$_2$NNH$_2$$\cdotH_2$O – hydrazine hydrate
EtOH – ethanol
MeOH – methanol
Pd/C – palladium(0) on Carbon
KOH – potassium hydroxide
Me$_2$SO$_4$ – dimethyl sulfate
NaH – sodium hydride
KH – potassium hydride
AcCl – acetyl chloride
S_NAr – nucleophilic aromatic substitution
tol – toluene
Cu$_2$O – copper(I) oxide
DMF – N,N’-dimethylformamide
CuCl – copper(I) chloride
KBH$_4$ – potassium borohydride
H$_2$ – molecular hydrogen
S_N2 – bimolecular nucleophilic substitution
SnCl$_2$ – tin(II) chloride
HCl – hydrochloric acid
HBr – hydrobromic acid
RaNi – raney nickel
atm – atmosphere
psi – pounds per square inch

(SIPr)Pd(Cin)Cl – Chloro[(1,2,3-n)-3-phenyl-2-propenyl][1,3-bis(2,6-di-i-propylphenyl)]-4,5-dihydroimidazol-2-ylidene palladium(II)

TOFMS – time of flight mass spectrometry
MW – microwave
LUMO – lowest unoccupied molecular orbital

N_2 – molecular nitrogen

CO_2 – carbon dioxide

KDA – potassium diisopropylamine

DIPA – diisopropylamine

LAH – lithium aluminium hydride

AcOH – acetic acid

Li – lithium

EAS – electrophilic aromatic substitution

Pd – palladium

Gd – gadolinium

NR – no reaction

Xyl – xylene

PE – petroleum ether

EA – ethyl acetate

DCM – dichloromethane

Et$_2$O – diethyl ether
ABSTRACT

Supramolecular chemistry involves the formation of complex molecular entities that have the capacity to participate in specific molecular recognition of guest molecules. A commonly employed scaffold in supramolecular chemistry is the trimeric crown-shaped molecule cyclotriveratrylene (CTV). CTV has been studied extensively for its capability of binding a number of smaller organic and organometallic guests within its bowl-shaped cleft and has been used as a building block enabling the construction of more complex cryptophanes. The goal of this research is the synthesis and characterization of a novel cyclophane, tribenzo-1,4,7-triazacyclononene and derivatives thereof. These new cyclophanes should have greater versatility than the parent hydrocarbon macrocycle including greatly enhanced water solubility, ability to coordinate to metal ligands, the potential for use in drug delivery, and unique optical and liquid crystal properties. Progress towards these molecules have employed both Buchwald-Hartwig palladium catalyzed N-arylation as well as benzyne chemistry. The synthesis of tribenzo-1,4,7-triazacyclononatriene and its derivatives will be discussed.
CHAPTER 1
AN INTRODUCTION TO SUPRAMOLECULAR CHEMISTRY,
CTV AND N3-CTV

Supramolecular Chemistry

The area of supramolecular chemistry is of continued interest due to a wide variety of applications including materials technology, catalysis, medicine, analytical detection and sensing. Supramolecular chemistry involves the formation of complex molecular entities that have the capacity to participate in specific molecular recognition of guest molecules.\(^1\),\(^2\) Host-guest chemistry is the result of weak non-covalent interactions between molecules such as hydrogen-bonding, metal coordination, hydrophobic forces, \(\pi-\pi\) interactions and van der Waals forces. These types of interactions result in the complementarity of the host and guest molecules. Complementarity is well established in biology and is critical to both structure and function of many biological processes including protein folding, the binding of substrates to enzymes, and DNA base pairing of the double helix structure.\(^3\) Supramolecular host-
guest chemistry is often studied with the intention of gaining a better understanding of biological processes and mimicking those processes.

Cyclophanes

Cyclophanes are supramolecular structures comprised of aromatic units with bridging chains that may be used to form cage-like structures,\(^4\) and have applications in molecular and receptor recognition. They have also been used as building blocks for organic catalysts as well as in the preparation of crown ethers and cryptands.\(^5\) The cyclophane motif exists in nature, for instance the natural product cavicularin, a metacyclophane. Recent advances in the synthesis of cyclophanes include Haouamine A, which is a paracyclophane found in certain species of tunicate, and is of interest for its use as a potential anticancer drug.\(^6,\)\(^7\) Other biological and pharmaceutical uses for cyclophanes include reversal agents of muscle relaxants\(^8\) and water soluble inhibitors of HIV protease.\(^9\)

Host-guest chemistry can involve the binding of cations, anions, metals or neutral molecules, all through non-covalent interactions. The binding of metal cations plays a significant role in biology; for example, the naturally occurring antibiotic valinomycin binds K\(^+\) and transports it through the mitochondrial membrane in the presence of Na\(^+\) ions. The K\(^+\) is held tightly in the center of the molecule by complexation to the electronegative oxygen atoms of the ester groups while the macrocycle itself is stabilized by H-bonding.\(^3\) Many enzymatic binding sites contain catalytic metal cations that are involved in the regulation of concentration gradients across membranes. Recently, metal cations like Gd\(^{3+}\) have been used in MRI contrast agents. Porphyrins are an example of
naturally occurring macrocycles that bind iron in heme groups and magnesium in chlorophyll. Furthermore, host molecules that are capable of binding specific metal-cation guests can be utilized in the removal of toxins from poisoning victims and pollutants from the environment.

Supramolecular chemistry involving the specific binding of anionic guests is of significant interest biologically and environmentally. The binding of a negatively-charged guest can be very strong and selective. Binding of anions may also alter the reactivity of the receptor molecule. Anions are extremely important in biology, for instance many enzyme substrates are negatively charged species. Anions can also play significant roles in diseases. Cystic fibrosis is a genetic disease that is caused by the misregulation of chloride channels.

The study of supramolecular chemistry can have a significant impact across multiple disciplines, and there continues to be great interest in the development of cyclophanes as hosts for ionic guests. For example, Zhang and coworkers were investigating negatively charged cyclophanes for chelation of quaternary ammonium neuromuscular blocking agents, while bis-quinolinium cyclophanes were shown to be effective inhibitors of small conductance Ca$^{2+}$ activated K$^+$ channels. The design and synthesis of cyclophanes capable of ionic binding continues to be challenging, especially for binding of anions. There are many factors that one must account for when designing synthetic receptors for ionic guests: size, charge, pH and solvation will have an impact on the binding of the guest molecule to the receptor. Another challenge is the solubility of the synthetic receptors. Biological processes occur in an aqueous environment and
synthetic receptors are often insoluble in water. One challenge facing supramolecular chemistry is the design and synthesis of synthetic receptors that are soluble in an aqueous media.18

Cyclotrivertrylene (CTV)

Cyclotriveratrylene (CTV, 1a, 1b), a [1.1.1]orthocyclophane, is an archetypal cyclophane scaffold that is commonly employed in supramolecular chemistry.19 CTV is readily prepared from veratryl alcohol in acid and has been studied extensively for its capability of binding a number of smaller organic and organometallic guests within its bowl-shaped cleft.20-22 CTV modification continues to be a significant area of study.23-27 Nierengarten reported the encapsulation of C_{60} by dendritic CTV derivatives,23 while Kuck and coworkers reported a carbon-capped CTV derivative.24 Furthermore, Hardie has synthesized many CTV derivatives, including those containing pyridyl functional groups for use as multifunctional ligands in coordination networks,25 CTV combined with halogenated carboborane and Group 1 metal cations26 as well as the characterization of CTV clathrates with ethanol and DMSO.27

FIGURE 1 - Crown and Saddle CTV
CTV exists almost exclusively in the crown conformation 1a. Recently, Zimmermann and coworkers isolated and characterized the saddle conformer of CTV 1b through high-temperature melt and quench techniques, and also studied the thermodynamic and kinetic properties of the interconversion between the crown and saddle CTV conformers.28 We have successfully isolated the crown 2a and saddle 2b conformers of CTV-oxime derivative,29 and studied the kinetics and thermodynamics of interconversion between the crown and saddle conformers,30 as part of our interest in exploration of apex-modified CTV derivatives.31

FIGURE 2 - Crown and Saddle CTV-oxime Derivatives

CTV is often used as a building block enabling the construction of more complex cryptophanes,32-35 which is one reason for continued interest in the elaboration of CTV.36 Collet was among the first to transform CTV by dealkylating the six methoxy groups followed by treatment with bromoacetate esters and subsequent ester hydrolysis to obtain the slightly water soluble hexa-acid cyclophanes.37 Huber and Nierengarten have both reported on the synthesis of water-soluble CTV cryptands; Huber substituted the methoxy groups for an acetic acid moiety which led to a new class of xenon-carrier
molecules that are soluble in water at physiological pH,38, 39 while Nierengarten has appended multiple polyethylene glycol units to the periphery of CTV in order to enable the hydrophobic core to dissolve in water and solublize C\textsubscript{60}.40 Furthermore, there are several heteroatom derivatives of CTV and the corresponding tribenzocyclononene core in which the methylene groups have been replaced with sulfur, oxygen, mercury and nitrogen (\textit{3a-d}).41-43 Trithiacyclotrivertrylene \textit{3a}44, 45 forms complexes with copper(I),46 rhodium (III),47 and platinium (II),48 and it also exists in a temperature and solvent-dependent equilibrium of the crown and saddle forms. In addition, the trioxacyclononene \textit{3b},41, 42 and trimercury \textit{3c},43 which is planar rather than crown-shaped, have also been reported. In 2005, Hara and co-workers reported the first nitrogen-substituted cyclophane with the synthesis of monoamine tribenzo-1-azacyclophane \textit{3d} which was prepared as a potential benzodiazepine receptor ligand.49 Azacyclophane \textit{3d} was thus designed to act as a guest (ligand) to the benzodiazaprine receptor whereas \textit{3a-3c} were designed as host molecules.
1,4,7-Triazacyclononane (TACN)

The small macrocycle 1,4,7-triazacyclononane (TACN, 4) is a highly symmetrical tridentate ligand that has been shown to bind multiple metal guests, including zinc, copper, cobalt and nickel. TACN is easily prepared from ethylenediamine; and several derivatives have been reported in the literature, including the carbon-capped orthoamide (Figure 4). In addition to metal chelating properties, TACN has been functionalized on nitrogen with a variety of groups enabling physicochemical and functional tuning of the molecular properties.
Several biological uses of TACN derivatives have been reported, including gadolinium complexes which are of interest as MRI contrast agents. In addition, TACN derivatives have been of interest for antibody-targeted radiation therapy (radioimmunotherapy, RIT). RIT utilizes bifunctional ligands that can tightly bind a cytotoxic metal as well as a tumor-specific antibody. Brechbiel and co-workers have recently reported the synthesis of C-NETA, a derivative that has shown rapid binding of Lu(III) and Bi(III) (Figure 5).
Furthermore, N-functionalized complexes of TACN have been shown to form bis-complexes with Cu(II) which have been used as DNA-delivery systems,58 and a TACN derivative with guanidinium and hydroxyl side-arms has shown to be a very efficient at promoting DNA cleavage.59

Tribenzo-1,4,7-triazacyclononatriene (N3-CTV)

The goal of this research is the synthesis of target molecule tribenzo-1,4,7-triazacyclononatriene (N3-CTV, 6), a structural combination of the CTV and TACN molecules (Figure 6).
N3-CTV should have much greater versatility than the parent CTV including enhanced water solubility due to the three apex nitrogens. In addition to enhanced water solubility the apex nitrogens may also aid in the binding of charged guests. Polyaza macrocycles can incorporate both electrostatic interactions and hydrogen bonding enabling the receptor to be tuned; the potential ability of N3-CTV to bind cationic species or a proton in its apex in the crown conformation should yield a charged host with the potential of binding anionic guests. N3-CTV and its derivatives may have medicinal applications, for example
the biological delivery of fullerenes. Most modifications of the parent CTV has been accomplished along the periphery of the molecule; a significant advantage offered by the target N3-CTV is the ability to modify the cyclophane at the apex nitrogens enabling the physiochemical properties of the cyclophane to be modified. Additionally, the apex nitrogens can serve as ligands for metal coordination. Attachment of the appropriate side-arm to one or more of the apex nitrogens can enable the N3-CTV cyclophane to be bound to solid surfaces, for instance gold or gold nanoparticles. Coordination of the N3-CTV with different metals including gadolinium may be of interest as MRI contrast agents or RIT drug candidates. The new triazacyclononene and its derivatives may also be studied for their unique liquid crystal properties, which can have optical and electronic applications. N3-CTV has the potential to be utilized in multiple areas of chemistry including materials technology, medicine, analytical detection and sensing.
CHAPTER 2

ATTEMPTED CONVERGENT SYNTHESSES OF N3-CTV

The desired target, N3-CTV is a 9-membered cyclophane comprised of three aniline groups bonded together through N-aryl bonds. Looking at the N3-CTV compound retrosynthetically, one can envision four different synthetic approaches as shown in the figure below. The simplest method for synthesizing N3-CTV would be a direct [1x3] convergent trimerization. Here, a simple o-substituted aniline would react with itself generating the desired cyclophane in a one-pot reaction. One could also take advantage of a [2x1] convergent synthesis in which the third aromatic ring would be joined in a double N-arylation reaction. Finally, N3-CTV may be synthesized one ring at a time in a linear approach, which is the approach that was ultimately realized.
A key N-arylation reaction in the pursuit of the novel triaza-CTV (N3-CTV) takes advantage of a metal-catalyzed oxidative addition/reductive elimination mechanism. Conditions for palladium-catalyzed N-arylation have been established by Buchwald60-62 and Hartwig.63-66

The catalytic cycle of the Buchwald-Hartwig N-arylation is illustrated in Figure 8. The catalyst and ligand combine to form the active Pd-phosphine complex. This complex then oxidatively inserts into the aryl-halide bond. Next the nitrogen of the amine bonds to the palladium, then the amine is deprotonated by base. Finally the C-N bond is formed by reductive elimination along with regeneration of the Pd-phosphine complex.
The Pd-phosphine complex is very important in these cross-coupling reactions because of the “natural bite angle” of the P-Pd-P angle.67 In general, Pd(II) prefers a square planar geometry because they are d8 whereas Pd(0) complexes will coordinate in linear, tetrahedral and trigonal geometries because Pd(II) complexes are d10.67 Thus the choices of palladium catalyst and phosphine ligand are extremely important. If during oxidative insertion, the Pd(II) species is present, then a bond formation must complement a square planar geometry. On the other hand, if the Pd(0) species is present, more options for coordination geometry may lead to C-N bond formation in a greater variety of substituents. In addition to the Pd-catalyzed Buchwald-Hartwig conditions the familiar copper-mediated Ullmann reaction has been studied in detail,68 and a milder set of
copper-catalyzed Ullmann conditions described by Zhang have also been applied. Similar to palladium (0), copper can coordinate in linear or tetrahedral geometry. The different metals offer different reactivities, thus creating more variety for synthetic approaches leading to the target N3-CTV.

Convergent Trimerization

The simplest and most direct method involves the convergent trimerization of an ortho-substituted halogenated aniline. In addition to the desired trimer, the dimer, tetramer as well as higher oligomers are also possible (Scheme 1).

SCHEME 1 - General Look at the Convergent Trimerization

![Scheme 1](image_url)

This route has precedent in the work of Tanaka and coworkers who described the synthesis of trizaza[1,3]meta cyclophane 7 in 1.6% yield via direct trimerization of N-methyl-3-bromoaniline utilizing the palladium catalyzed cross-coupling methods of Buchwald and Hartwig (Scheme 2).
We initially attempted to synthesize our target triaza orthocyclophane using similar methods to that of Tanaka. First, we subjected 2-iodoaniline to Buchwald-Hartwig cross-coupling conditions employing Pd(OAc)$_2$ as the catalyst, P(t-Bu)$_3$ as the ligand, and NaOtBu as the base in refluxing 1,4-dioxane under an inert atmosphere (Scheme 3). These conditions afforded phenazine 8 in 92% isolated yield, apparently via facile air oxidation of the metastable dihydrophenazine,71 as the only detected product confirmed by 1H NMR (δ 8.25 and 7.83).

SCHEME 3 – Attempted Trimerization of o-Iodoaniline
N-Arylation via Pd-catalysis may be accomplished using numerous choices for the catalyst, ligand, base and solvent employed. The different components of the Buchwald-Hartwig reactions can lead to countless possibilities in the pursuit of a particular reaction sequence. For example, the phosphine ligands can be either mono-dentate or bidentate, there have been several different reports on what type of ligand best complements particular catalysts, halides and amines.72-75 There have also been several accounts of different catalytic systems examining which are better for specific arylations and also limitations of specific systems.61, 76-82 In addition, numerous ligands have been synthesized in order to decrease the time and temperature required for reactions to go to completion.63, 83, 84 A variety of combinations of catalysts and ligands were employed in an attempt to obtain the desired triaza-cyclophane in a convergent trimerization (Table 1). When DPEPhos was used as the ligand, no reaction was observed (Table 1, entries 1 and 2). A trace of phenazine was formed when P(t-Bu)\textsubscript{3} was used as the ligand; the recovery of SM was most likely the result of improper handling of the P(t-Bu)\textsubscript{3} reagent (Table 1, entry 3). The use of KОtBu as a base over NaОtBu resulted in 43\% isolated yield of phenazine in addition to recovered SM. Despite several different attempts, phenazine was the only isolated product for this convergent trimerization approach under Pd-catalyzed cross-coupling conditions.
In addition to Buchwald and Hartwig methods, copper-catalyzed Ullmann conditions were also explored in the attempted convergent trimerization toward N3-CTV.

The overall reaction mechanism for copper-mediated catalysis is the same as that of palladium; a catalyst-ligand complex oxidatively inserts into the aryl halide bond, which is followed by nucleophilic attack of the aniline nitrogen, deprotonation by a base and
finally reductive elimination of the desired product containing the newly formed C-N bond. Reaction conditions for copper-catalyzed N-arylation involve a copper (I) catalyst such as CuI, an amino acid ligand such as L-proline, and a base. Zhang and coworkers employed Ullmann conditions in order to obtain an azametacyclophane; similarly we employed CuI, L-proline and K$_2$CO$_3$ in DMSO. The desired cyclophane was not isolated under attempted Cu-catalysis (Table 2). Only starting material was recovered using purchased CuI (Table 2, entry 3), probably due to its prolonged exposure to light and air. When freshly prepared CuI was used, no reaction occurred and starting material was recovered (Table 2, entries 1, 2 and 4), even though a standard reaction with 1-bromo-4-chlorobenzene and aniline showed product spots by TLC analysis.
The results of the attempted convergent trimerization were consistent with those of Tanaka who was unable to obtain the unalkylated (tris-NH) triaza metacyclophane from the cross-coupling reaction using a primary aniline. Bearing this in mind, we then tried using a secondary aniline. 2-Bromoaniline was methylated employing n-BuLi followed by quenching with MeI in THF. The N-methyl 2-bromoaniline was subjected to cross-coupling conditions involving Pd(dba)$_2$ as the catalyst, racemic BINAP as the ligand, and Cs$_2$CO$_3$ as the base. The reaction was run in dry toluene for 24-48 hours at 120°C. I isolated the reduced dimer 9a, 0.3% of the theoretical yield, and what we believe is the unclosed tetramer 9b in 2% yield (9b) (Scheme 4). There is also an additional 10 mg, (2%
yield) of a mixture of 2 unknown products that are likely oligomers and not phenazine derivatives nor the desired N3-CTV. NMR data of the reaction mixture from the attempted convergent trimerization of N-methyl-2-bromoaniline were compared to the authentic standards of both the trimethyl N3-CTV derivative and dimethyl N3-CTV derivative, both of which were successfully synthesized later by alternative methods. The attempted convergent trimerization of N-methyl-2-bromoaniline showed no indication of the presence of either trimethyl or dimethyl N3-CTV derivatives. Although the desired N3-CTV was not obtained through this synthetic route, the isolation of oligomeric products other than phenazine was an indication of some progress.

SCHEME 4 - Convergent Trimerization of N-Methyl-2-Bromoaniline

![SCHEME 4](image_url)
[2x1] Dihalide Convergent Synthesis

When the desired product was not detected through the convergent trimerization, efforts were focused on a [2x1] synthetic approach. Here, the synthesis could begin with either a 2,2’-dihalodiphenylamine 10 or a 2,2’diaminodiphenylamine 12, both of which could potentially undergo a double N-arylation via Buchwald-Hartwig or Ullmann coupling with the appropriate benzene derivative (Scheme 5). It was hypothesized that the formation of the first C-N bond would give rise to more entropically favorable ring closure conditions for the second C-N bond through an intramolecular C-N bond formation.

SCHEME 5 - Two Possible [2x1] Convergent Syntheses
Initial attempts to synthesize N3-CTV via the [2x1] convergent approach began with 2,2’-dibromophenylamine and o-phenylenediamine. Both palladium and copper-catalyzed conditions were employed for the attempted convergent synthesis (Table 3). Most of the synthetic conditions employed showed no reaction based on thin layer chromatography (TLC) analysis (Table 3, entries 1-4). However, when Buchwald-Hartwig conditions consisting of Pd(dba)$_2$, BINAP and NaOtBu were employed, the major product formed and isolated was carbazole which was confirmed by 1H NMR (δ 8.05 bs) (Table 3, entries 5 and 6). Carbazole is the result of reductive coupling of the dihalide to produce the aryl C-C bond.
TABLE 3 - Attempted [2x1] Convergent Synthesis of 2,2’-Dibromodiphenylamine and o-Phenylenediamine

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Time/Temp</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd(OAc)$_2$</td>
<td>P(t-Bu)$_3$</td>
<td>NaO-t-Bu</td>
<td>toluene</td>
<td>80/30 min, 111/48 h</td>
<td>recovered SM</td>
</tr>
<tr>
<td>Pd(OAc)$_2$</td>
<td>DPEPhos</td>
<td>NaO-t-Bu</td>
<td>toluene</td>
<td>80/30 min, 111/48 h</td>
<td>recovered SM</td>
</tr>
<tr>
<td>CuI</td>
<td>L-Pro</td>
<td>K$_2$CO$_3$</td>
<td>DMSO</td>
<td>85/24 h, 150/24 h</td>
<td>recovered SM</td>
</tr>
<tr>
<td>Pd(OAc)$_2$</td>
<td>DPEPhos</td>
<td>NaO-t-Bu</td>
<td>dioxane</td>
<td>80/30 min, 120/5 d</td>
<td>recovered SM</td>
</tr>
<tr>
<td>Pd(dba)$_2$</td>
<td>BINAP</td>
<td>NaO-t-Bu</td>
<td>toluene</td>
<td>80/30 min, 120/48 h</td>
<td> 6%</td>
</tr>
<tr>
<td>Pd(dba)$_2$</td>
<td>BINAP</td>
<td>NaO-t-Bu</td>
<td>p-xylene</td>
<td>80/30 min, 138/48 h</td>
<td> 70.5%</td>
</tr>
</tbody>
</table>

In addition to carbazole 13, the mono-coupled triaryl product 14 was also isolated in 6% yield along with 22% recovered SM (Scheme 6).
SCHEME 6 - [2x1] Convergent Synthesis of 2,2-Dibromodiphenylamine

[2x1] Diamino Convergent Synthesis

A parallel [2x1] synthesis beginning with 2,2'-diaminodiphenylamine 12 was also explored. The 2,2'-diaminodiphenylamine 12 was obtained by reduction of 2,2'-dinitrodiphenylamine 11 with hydrazine hydrate (H₂NNH₂•H₂O) and Pd/C in refluxing EtOH according to the general procedure of Black et al. Compound 12 and 1,2-diiodobenzene were subjected to palladium-catalyzed N-arylation producing phenazine 8 in 20% yield as the only isolated product (Scheme 7). This is a surprising result since it involves an oxidation of the o-dianiline; however, Koutentis showed a similar result when benzene tetraamines were exposed to air in refluxing EtOH.

SCHEME 7 - Synthesis of 2,2’-Diaminodiphenylamine

We decided to install a methyl protecting group on the central nitrogen in an
attempt to stop the formation of phenazine during reduction; this was easily accomplished utilizing KOH and Me₂SO₄ in refluxing acetone to give 11a in quantitative yield.⁸⁹,⁹⁰ Reduction of 11a with H₂NNH₂ and Pd/C led to a 50:50 mixture of the desired N-methyl-2,2’-diaminodiphenylamine 12a and N-methyl dihydrophenazine 8a, again a product of oxidation (Scheme 8). This reflects how electron rich the diaminodiphenylamine is due to the electron donating nature of the three nitrogens in the system. Note here that air was carefully excluded, without effect, and we therefore believe that the electron acceptor was the dinitro starting material rather than molecular oxygen.

SCHEME 8 - Reduction of N-Methyl-2,2’-Dinitrodiphenylamine

Thus, in order to try and overcome the formation of phenazine derivatives during reduction, an electron-withdrawing acetyl group was attempted as a protecting group for the nitrogen in order to reduce the electron-rich nature of the molecule and reduce its lability toward oxidation. Protection of the middle nitrogen was attempted unsuccessfully with several different electron-withdrawing groups (Table 4). The
electron-withdrawing nature of the nitro groups on the diphenyldiamine make the secondary amine a very weak nucleophile, even when the protecting group was added to the deprotonated aniline. An acetyl group was successfully added in 50% yield with NaH and AcCl in THF, but was readily lost during purification with column chromatography. The loss of the acetyl group reflects the stability of the diphenylamine as a leaving group. Thus the acyl was too labile to survive Buchwald-Hartwig conditions. Closure to the 9-membered cyclophane was still attempted by N-arylation of N-methyl-2,2’-diaminodiphenylamine 12a and a 1,2-dichlorobenzene (Table 4). Conditions including Pd-catalyzed N-arylation led to the isolation of starting material, phenazine, or N-methyl dihydrophenazine (Table 4, entries 1 and 2). Also, similar results were observed in the attempted N-arylation of the 2,2’-diaminodiphenylamine with Cu-catalysis. We isolated what we believe may be a copper-ligated species (Table 4, entry 5) based on two broad singlets in the aromatic region, presumably the two NH’s (δ 7.07 and δ 6.43), however the symmetry of the molecule suggest otherwise.

In addition to metal-catalyzed cross coupling conditions, a double SNAr (Table 4, entry 5) was employed in the attempted closure of the free diaminoaniline. The 2,2’-diaminodiphenylamine along with 1,2-dichloro-4,5-dinitrobenzene and KOTBu were mixed in refluxing EtOH. The SNAr conditions led to the recovery of the 1,2-dichloro-4,5-dinitrobenzene and diphenylamine starting materials. A change in solvent and reaction temperature may lead to more favorable reaction conditions. The phenazine and N-methyl dihydrophenazine products were formed easily under Pd-catalyzed cross-
coupling conditions reflecting how labile toward oxidation the system is. Hence we
abandoned the approach involving direct reaction of 2,2’-diaminodiphenylamine.

TABLE 4 - Attempted [2x1] Convergent Synthesis of 2,2’-Diaminodiphenylamine and
N-Methyl-2,2’-Diaminodiphenylamine

<table>
<thead>
<tr>
<th>Diamine</th>
<th>Dihalobenzene</th>
<th>Conditions</th>
<th>Products Isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NH}_2 - \text{H} - \text{NH}_2)</td>
<td>(\text{Cl-Cl})</td>
<td>KOtBu/tol 130°C/24 h</td>
<td>(\text{NH}_2 - \text{H} - \text{NH}_2) 13% 87% recovered SM</td>
</tr>
<tr>
<td>(\text{NH}_2 - \text{Me} - \text{NH}_2)</td>
<td>(\text{Cl-Cl})</td>
<td>KOtBu/tol 130°C/24 h</td>
<td>(\text{N} - \text{Me} - \text{N}) 20% 80%</td>
</tr>
<tr>
<td>(\text{NH}_2 - \text{Me} - \text{NH}_2)</td>
<td>(\text{Br-Br})</td>
<td>Cu\textsubscript{2}O/DMF reflux 36 h</td>
<td>Products were not identified by (^1\text{H} \text{NMR})</td>
</tr>
<tr>
<td>(\text{NH}_2 - \text{Me} - \text{NH}_2)</td>
<td>(\text{Cl-Cl})</td>
<td>Copper Powder/Cul, (\text{Na}_2\text{CO}_3), DMF, 120°C 48 h</td>
<td>(\text{N} - \text{Me}) 2% 3%</td>
</tr>
<tr>
<td>(\text{NH}_2 - \text{H} - \text{NH}_2)</td>
<td>(\text{Cl}-\text{NO}_2 - \text{Cl})</td>
<td>EtOH, KOtBu double (\text{S}_\text{N} \text{AR})</td>
<td>(\text{NH}_2 - \text{Me} - \text{NH}_3) 6% recovered SM</td>
</tr>
</tbody>
</table>
Templated Convergent Synthesis

One other convergent route explored the idea of forming a template in which the overall structure of the desired N3-CTV was held in place by a carbon cap similar to the carbon-capped TACN derivative reported by Atkins. Using the general method of Atkins, compound 12 and the dimethyl ortho-amide of DMF were mixed in refluxing p-xylene in the attempted direct synthesis of the carbon-capped ortho-amide (16). Only the benzimidazole 15 was isolated based on 1H NMR analysis, δ 3.67 (2H, bs), δ 7.99 (1H, bs), which we hoped would be in equilibrium with the carbon-capped ortho amide. The equilibrium however appears to be shifted exclusively towards the benzimidazole, believed to be due to the strain in the 5-membered rings of the ortho-amide (Scheme 9).
The formation of the desired N3-CTV through a convergent synthesis involving only one or two steps resulted in phenazine and phenazine-like derivatives as the major products isolated. Despite the many different chemical strategies employed, the electron rich nature of the diphenylamine in combination with the ortho-substitution are ideal conditions favoring 6-membered phenazine formation over the desired 9-membered N3-CTV. Therefore a more traditional linear synthetic approach was employed in order to overcome the synthetic challenges of unwanted phenazine by-products.
CHAPTER 3

LINEAR SYNTHETIC STRATEGY AND THE FORMATION OF THE DESIRED N3-CTV

The continual formation of phenazine and phenazine-like by-products isolated utilizing more convergent approaches led to the examination of a linear synthetic strategy. The general retrosynthetic method is outlined in Scheme 10. The desired N3-CTV was constructed one ring at a time enabling protection of the nitrogens along the way, eliminating the formation of unwanted phenazine by-products.

SCHEME 10 - Linear Retrosynthetic Approach to N3-CTV

[Diagram of the retrosynthetic approach]

6 N3-CTV \(\rightarrow \) B \(\rightarrow \) A

X \(\rightarrow \) H

H2N
Although the linear retrosynthesis in Scheme 10 depicts a one-directional synthetic approach, there are two directional approaches in which the N3-CTV can be synthesized. The first strategy is to begin with the chlorine and build towards the terminal aniline (Scheme 11). There are four different ways in which this can be accomplished. The first o-substituted benzene contains the chloro group, which will be utilized in the final Buchwald-Hartwig closure, and either another halogen or a nitrogen containing substituent to enable coupling with the second ring. The second aromatic ring may be coupled to the first again with the complementary halogen and nitrogen substituent as required for Pd-catalyzed N-arylation. The final ring is incorporated in a similar fashion. Scheme 11 outlines the four different sequences that can be utilized in order to build the desired N3-CTV linearly beginning with a chlorine and ending with the aniline.

SCHEME 11 - Four Possible Synthetic Strategies Beginning With Chlorine and Building Towards the Aniline
Similarly, one can begin with the nitrogen required for the aniline and build to the triaryl precursor towards the chlorine to be used in the final N-arylation closing the 9-membered cyclophane (Scheme 12). Although both synthetic routes are very similar, there are many possibilities with respect to leaving group and nucleophilic nitrogen that can be utilized to form each C-N bond.

SCHEME 12 - Four Possible Synthetic Strategies Beginning With Aniline and Building Towards the Chlorine

Regardless of the direction we choose, the first step of the linear synthesis employs Buchwald-Hartwig Pd-catalyzed N-arylation chemistry to form an ortho-substituted diphenylamine, **A**. Unlike the diphenylamine used in the [2x1] approach discussed in chapter 2, this molecule contains both a halogen and primary aniline enabling the third ring to be coupled at either end. In order to find the most efficient set of conditions, several analogues were synthesized (Table 5). This also allowed for numerous options for the synthesis of subsequent steps, namely the synthesis of triarylamine **B**. For example, different halogens have different rates of reaction under Pd
cross-coupling conditions; therefore utilizing two different halogens such as a chlorine and bromine (Table 5, entries 1 and 2) will make one end of the molecule more reactive, decreasing the probability of reaction occurring at both ends. Also, introducing an electron-withdrawing group such as a nitro group (Table 5, entries 3 and 4) precludes multiple reactive aniline nitrogens.

TABLE 5 - Synthesis of Diphenylamine Derivatives, Intermediate A

<table>
<thead>
<tr>
<th>Aniline</th>
<th>Aryl Halide</th>
<th>Conditions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br,NH₂</td>
<td>Br,Cl</td>
<td>Pd(OAc)₂, DPEPhos, NaOtBu, tol</td>
<td>Br,NH₂,Cl</td>
</tr>
<tr>
<td>Cl,NH₂</td>
<td>Br,Br</td>
<td>Pd(OAc)₂, DPEPhos, NaOtBu, tol</td>
<td>Cl,NH₂,Br,Cl</td>
</tr>
<tr>
<td>Cl,NH₂</td>
<td>Br,N₂O₂</td>
<td>Pd(OAc)₂, BINAP, NaOtBu, p-xyl</td>
<td>Cl,N₂O₂,Br,N₂O₂</td>
</tr>
<tr>
<td>NO₂,NH₂</td>
<td>Br,Cl</td>
<td>Pd(dba)₂, BINAP, Cs₂CO₃, tol</td>
<td>NO₂,NH₂,Cl</td>
</tr>
<tr>
<td>NO₂,NH₂</td>
<td>Cl,Br</td>
<td>Pd(dba)₂, BINAP, Cs₂CO₃, tol</td>
<td>NO₂,NH₂,Cl</td>
</tr>
</tbody>
</table>

27%
74-80%
not isolated
96%
99%
The best set of conditions identified to afford intermediate A was a modification of the Buchwald-Hartwig N-arylation method used by Tietze et al.⁸⁶ Here, 1,2-bromochlorobenzene and o-nitroaniline were coupled employing Pd(dba)₂, BINAP and Cs₂CO₃ in dry toluene for 24 hours at 120°C. This gave 2-chloro-2’-nitrodiphenylamine 17 in 99% yield without further purification necessary (Scheme 13).

SCHEME 13 - Synthesis of Compound 17 (Intermediate A)

\[
\begin{align*}
\text{BrCl} + & \text{H₂N₂N₂H₂N₂N₂} \rightarrow \text{ClN₂O₂N₂N₂Cl} \\
\text{Pd(dba)₂, BINAP} \\n\text{Cs₂CO₃, Tol, 99%} & \rightarrow \text{N₂N₂N₂HClN₂O₂N₂N₂N₂Cl}
\end{align*}
\]

Protection of the aniline nitrogen was essential in order to eliminate unwanted phenazine-like by-products. The fairly acidic proton of the aniline could easily be abstracted by the base required for the cross-coupling reactions leaving the inappropriate nucleophile available for the 6-membered phenazine formation. The internal aniline was therefore protected by methylation using KOH and Me₂SO₄ in refluxing acetone according to the general procedure of Wilshire⁹² to give the N-methyl diphenylamine 18 in 100% yield with no need for purification. Compound 18 was easily reduced employing the general method of Sanz⁹³ using CuCl and KBH₄ in dry MeOH at room temperature to give 19 in 100% yield (Scheme 14).
SCHEME 14 - Methylation and Reduction of Intermediate A

More common reduction methods such as Pd/C and H₂NNH₂•H₂O or hydrogenation with H₂ and Pd/C gave dehalogenated and demethylated reduction products. For example, Pd/C and H₂NNH₂•H₂O gave a mixture of the dehalogenated and demethylated diphenylamine. Palladium can tightly bind chlorine and H₂NNH₂ can act as the nucleophile in an S_N2 attack displacing the methyl protecting group (Table 6, entry 1).

When a dissolving metal reduction utilizing SnCl₂ and HCl in refluxing EtOH was employed, ¹H NMR data showed 95% conversion to the reduced aniline; however recovery was poor presumably due to the tight binding of the product with tin salts (Table 6, entry 2 and 3). Reduction via hydrogenation using RaNi and Pd/C under high pressure were also attempted, resulting only in the recovery of starting material (Table 6, entries 4, 5 and 7).
TABLE 6 - Attempted Reductions of Intermediate A

<table>
<thead>
<tr>
<th>Entry</th>
<th>Conditions</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5% Pd/C, H$_2$NNH$_2$•H$_2$O, EtOH, reflux</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SnCl$_2$, HCl, EtOH, r.t.</td>
<td> 50% recovery, SM</td>
</tr>
<tr>
<td>3</td>
<td>SnCl$_2$, HCl, EtOH, reflux</td>
<td> 50% recovery, SM</td>
</tr>
<tr>
<td>4</td>
<td>RaNi, H$_2$, EtOH, r.t., 1 atm</td>
<td>Recovered SM (95%)</td>
</tr>
<tr>
<td>5</td>
<td>10% Pd/C, H$_2$, EtOH, r.t. 1 atm</td>
<td>Recovered SM (95%)</td>
</tr>
<tr>
<td>6</td>
<td>Na$_2$S$_2$O$_4$, H$_2$O, THF</td>
<td> 42% recovery, SM</td>
</tr>
<tr>
<td>7</td>
<td>10% Pd/C, H$_2$, EtOH, r.t., 60 psi</td>
<td> 50% recovery, SM</td>
</tr>
</tbody>
</table>
The next step in the linear synthesis was formation of the triarylamine derivative B. The intention was to utilize the primary aniline of compound 19 as the point of attachment for the third aromatic ring employing either of two different reaction mechanisms. Formation of C-N bonds could be formed by Buchwald-Hartwig N-arylation, which had already proven to be successful. In addition, we hypothesized that an SNAr reaction could also be utilized. Reaction conditions for SNAr require an activated benzene ring with a good leaving group, base and a strong nucleophile. In this case, the nucleophile was the aniline and the activated ring was o-fluoronitrobenzene (Table 7, entry 6).
As shown in Table 7, successful synthesis of the triarylamine B involved the methyl protected diphenylamine, 19, which was coupled to o-iodonitrobenzene under Buchwald-Hartwig conditions utilizing Pd(dba)$_2$ as the catalyst, racemic BINAP as the
ligand, and Cs$_2$CO$_3$ as the base. The reaction was conducted under an argon atmosphere in a pressure tube at 120°C for 24 h. The resulting N,N’-diaryl-o-phenylenediamine 20 was synthesized in 81% yield following column chromatography (Scheme 15).

SCHEME 15 - Synthesis of Compound 20, Triarylamine B

![Reaction Scheme]

The formation of phenazine-like derivatives through the addition of the third benzene ring by Pd-catalyzed N-arylation (Table 7, entry 3) further solidified that the internal nitrogen was the point of nucleophilic attack for the 6-membered phenazine cyclization. Therefore, it seemed that protection of that internal nitrogen was critical in order to avoid unwanted phenazine-like by-products. Methylation was easily accomplished employing KH and MeI in DMF followed by reduction of the nitro group with CuCl and KBH$_4$ to give products 21 and 22a respectively (Scheme 16).
With all the components of the desired triazacyclophane in place, we subjected compound 22a, and several related derivatives (Figure 9) to Buchwald-Hartwig N-arylation conditions in order to afford the target N3-CTV scaffold which ultimately proved to be successful. Several analogues of the triarylamine 22a were synthesized to be used in the attempted final closure to the 9-membered azacyclophane. Derivatives included two different halogens, bromine and chlorine each with different reactivities towards Pd-catalyzed N-arylation. Additionally, the terminal aniline was substituted with either a benzyl group or an acetyl group. The acetyl group lowered the pKa of the aniline proton thus making it more acidic. The benzyl group provided a secondary aniline providing only one reaction site. The benzyl and acetyl derivatives were successfully synthesized, 22c-e, and subjected to a variety of Buchwald-Hartwig cross-coupling reactions along with compounds 22a and 22b (Figure 9, Table 8).
However, closure to the desired cyclophane was not easily attained and was highly dependent upon conditions. First, the final cyclization to the 9-membered cyclophane is an intramolecular reaction, therefore, the concentration of the overall reaction was kept dilute, (0.05-0.01M) in order to reduce the formation of oligomers by decreasing the rate at which molecules undergo intermolecular processes. Also, the key elements needed for the Buchwald-Hartwig N-arylation, namely catalyst and ligand, were used in very small quantities, (0.5-10% mol). The combination of small catalyst/ligand loading ratios with a very dilute solution made for conditions that failed to give rise to oxidative insertion of the Pd-phosphine complex into the haloaryl bond, let alone successfully undergo the N-arylation step (Table 8).
TABLE 8 - Attempted Final Cyclization Utilizing Buchwald-Hartwig Conditions

![Buchwald-Hartwig Reaction Diagram]

<table>
<thead>
<tr>
<th>Derivative (22a-e)</th>
<th>Catalyst</th>
<th>Ligand</th>
<th>Base</th>
<th>Solvent</th>
<th>Time/Temp(°C)</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>22a</td>
<td>(SIPr)Pd(Cin)Cl</td>
<td>KOtBu</td>
<td>DME</td>
<td>24 h/75</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>22a</td>
<td>(SIPr)Pd(Cin)Cl</td>
<td>KOtBu</td>
<td>DME</td>
<td>7 d/r.t.</td>
<td>Degradation of SM</td>
<td></td>
</tr>
<tr>
<td>22a</td>
<td>Pd(dba)₂</td>
<td>P(tBu)₃</td>
<td>Cs₂CO₃</td>
<td>tol</td>
<td>7 d/r.t.</td>
<td>SM</td>
</tr>
<tr>
<td>22a</td>
<td>Pd(dba)₂</td>
<td>P(tBu)₃</td>
<td>Cs₂CO₃</td>
<td>tol</td>
<td>5 d/65</td>
<td>SM</td>
</tr>
<tr>
<td>22a</td>
<td>Pd(dba)₂</td>
<td>P(tBu)₃</td>
<td>KOTBu</td>
<td>tol</td>
<td>5 d/65</td>
<td>SM</td>
</tr>
<tr>
<td>22a</td>
<td>Pd(OAc)₂</td>
<td>P(tBu)₃</td>
<td>KOTBu</td>
<td>tol</td>
<td>5 d/65</td>
<td>SM</td>
</tr>
<tr>
<td>22a</td>
<td>(SIPr)Pd(Cin)Cl</td>
<td>KOtBu</td>
<td>tol</td>
<td>5 d/75</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>22b</td>
<td>(SIPr)Pd(Cin)Cl</td>
<td>KOtBu</td>
<td>tol</td>
<td>5 d/75</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>22c</td>
<td>Pd(dba)₂</td>
<td>BINAP</td>
<td>Cs₂CO₃</td>
<td>tol</td>
<td>32 h/75-110</td>
<td>SM</td>
</tr>
<tr>
<td>22c</td>
<td>Pd(dba)₂</td>
<td>P(tBu)₃</td>
<td>NaOtBu</td>
<td>tol</td>
<td>7 d/r.t.</td>
<td>SM</td>
</tr>
<tr>
<td>22d</td>
<td>(SIPr)Pd(Cin)Cl</td>
<td>LiHMDS</td>
<td>DME</td>
<td>48 h/r.t.–60</td>
<td>SM</td>
<td></td>
</tr>
<tr>
<td>22d</td>
<td>Pd(dba)₂</td>
<td>BINAP</td>
<td>LiHMDS</td>
<td>tol</td>
<td>24 h/110</td>
<td>SM</td>
</tr>
<tr>
<td>22d</td>
<td>Pd(dba)₂</td>
<td>P(tBu)₃</td>
<td>LiHMDS</td>
<td>tol</td>
<td>24 h/110</td>
<td>SM</td>
</tr>
<tr>
<td>22d</td>
<td>Pd(OAc)₂</td>
<td>P(tBu)₃</td>
<td>LiHMDS</td>
<td>tol</td>
<td>24 h/110</td>
<td>SM</td>
</tr>
<tr>
<td>22e</td>
<td>Pd(dba)₂</td>
<td>BINAP</td>
<td>Cs₂CO₃</td>
<td>tol</td>
<td>48 h/110</td>
<td>SM</td>
</tr>
</tbody>
</table>

* (SIPr)Pd(Cin)Cl – Chloro[(1,2,3-n)-3-phenyl-2-propenyl][1,3-bis(2,6-di-i-propylphenyl)-4,5-dihydroimidazol-2-ylidene]palladium(II)

In a similar reaction, derivative **22a** was treated with the following Buchwald-Hartwig conditions: Pd(dba)₂, BINAP, Cs₂CO₃ in toluene at 130°C in a sealed tube. After 24 h, no reaction took place based on TLC analysis. The reaction mixture was recharged with another loading of catalyst and ligand and allowed to stir for another 24 h in a 130°C oil bath. The reaction was removed from the oil bath and TLC showed no
reaction. Once more the mixture was recharged with catalyst and ligand and allowed to react for another 48 h, upon which TLC showed 2 new spots. After purification by column chromatography, we were able to isolate the desired N,N’-dimethyl N3-CTV derivative 6a in 5% yield.

FIGURE 10 – N,N’-Dimethyl N3-CTV

The continual recharging of the reaction mixture with catalyst and ligand increased the concentration of the catalyst/ligand complex finally enabling insertion into the haloaryl bond.

The structure of N,N’-dimethyl N3-CTV was confirmed by multiple characterization methods. In the 1H NMR, methyl groups are observed at δ 2.68 (6H, s), and the NH observed at δ 5.82 (1H, bs). 13C NMR confirms the presence of 10 different carbons, six tertiary and three quaternary in the aromatic region, as well as one aliphatic carbon at δ 39.9 ppm. The calculated mass of MH$^+$ for the N,N’-dimethyl N3-CTV is 302.1657; TOFMS shows a M+1 at 302.1573. Finally, single crystal X-ray analysis confirmed the structure and shows that the N3-CTV molecule adopts a C2-symmetric
saddle conformation, unlike the parent CTV which exists almost exclusively in the crown-conformation (Figure 11).

FIGURE 11 - X-ray Structure of N,N’-Dimethyl N3-CTV with Atom Labels, Thermal Ellipsoids are at the 50% Probability Level.

Although the target molecule was successfully isolated as the N,N’-dimethyl derivative 6a, the reaction conditions were not ideal and the yield was low (5%). Multiple catalyst loadings and long reaction times led to a very poor conversion to the desired N3-CTV derivative. One way we were able to improve the yield of the final cyclization step was by employing the use of a microwave reactor for the Buchwald-Hartwig cross-coupling reaction. Microwave-assisted organic synthesis is a rapidly growing practice. Microwave (MW) reactors enable shorter reaction times, better
conversion and lower catalytic loading ratios. Microwaves allow for irradiation to be very localized as opposed to thermal heating, which is widely dispersed.

In addition to microwave irradiation, the catalyst and ligand were increased to a stoichiometric amount rather than the typical 0.5-10% catalytic loading ratios generally employed. The final reaction step was conducted in a CEM Discover® Microwave, using Pd(dba)$_2$, BINAP, Cs$_2$CO$_3$ in toluene with a reaction concentration of 0.1M. The MW conditions employed for the final cyclization were as follows: temperature of 150°C, 200 psi, 240 min. With these changes, the overall isolated yield of the final cyclization step increased to 50% versus the initial 5% isolated after multiple catalyst/ligand loadings and under thermal heating conditions. To compare whether MW irradiation was better than thermal heating, another experiment was conducted with a stoichiometric amount of catalyst and ligand under thermal heating. After a reaction period of 5 days at 120°C, 10 mg of the desired N,N'-dimethyl N3-CTV was isolated after purification by column chromatography, representing 20% of the theoretical yield. Based on these results, it is clear the MW heating is more efficient than thermal heating in the closure of the 9-membered N3-CTV.

Conditions for the final step in the synthesis have not yet been completely optimized. Several different factors can cause a microwave tube to explode, leading to loss of material. For example, the choice of solvent is important because of solubility. If the palladium-ligand complex is not soluble in a particular solvent, then the palladium will precipitate out of solution and form a mirror on the inside of the tube; this mirror causes
the tube to burst upon MW heating. Similarly, increasing the concentration of the overall reaction by decreasing the total amount of solvent leads to bursting of the MW tube. Presumably, this occurs because using a stoichiometric quantity of Pd-complex in a smaller amount of solvent leads to insufficient solubility of the catalyst-ligand complex. Ideal reaction conditions would allow for a catalytic loading ratio of the palladium-ligand complex along with a more concentrated overall reaction solution. Currently, the MW reactor in our lab only allows for a minimum of 1 mL of solvent in a 10 mL vessel; efforts are focused on finding ways to utilize the MW for smaller microscale synthesis.

Scheme 17 summarizes the complete synthesis of N,N′-dimethyl N3-CTV in 42% overall yield. A modification of the Buchwald-Hartwig N-arylation method used by Tietze et al. of 1,2-bromochlorobenzene and o-nitroaniline gives 2-chloro-2′-nitrodiphenylamine 17 in 99% yield. The amine was protected by methylation using KOH and Me₂SO₄ in refluxing acetone to giving the N-methyl diphenylamine 18 in quantitative yield. Compound 18 was easily reduced employing the general method of Sanz using CuCl and KBH₄ in dry MeOH at room temperature to give 19 in 100% yield. The aniline 19 was coupled to iodonitrobenzene through the previously established Buchwald-Hartwig conditions to produce the triaryl amine 20 in 99% yield. Compound 20 was subjected to methylation by KH and MeI followed by reduction of the nitro group with CuCl and KBH₄ to give products 21 and 22a, respectively. The triaryl aniline was successfully closed to the 9-membered cyclophane through the use of Buchwald-Hartwig coupling in a microwave reactor to afford the desired dimethyl N3-CTV 6a in
50% isolated yield.

SCHEME 17 - Complete Linear Synthesis of N,N'-Dimethyl N3-CTV

The same overall synthesis was completed replacing the chlorine atom with bromine (Scheme 18). It was thought that the bromine derivative would be more reactive towards Buchwald-Hartwig N-arylation in the final cyclization step. Attempted closures with bromine under thermal heating were unsuccessful in producing the desired N3-CTV. The final cyclization of the bromo triaryl derivative 22b to the triazacyclophane using higher catalyst/ligand concentrations and MW irradiation that were successful for the chloro derivative have not yet been employed.
In conclusion, we have shown that the synthesis of the ortho-cyclophane, N,N'-dimethyl N3-CTV can be achieved in 7 steps in 42% overall yield. Palladium catalyzed N-arylation, followed by alkylation and reduction was reiterated in order to obtain the triaryl precursor to the final palladium-catalyzed cyclization to the 9-membered cyclophane. The new N3-CTV cyclophane scaffold complements the familiar carbocyclic CTV framework as discussed previously.
CHAPTER 4

BENZYZNE CLOSURE

In addition to the Buchwald-Hartwig Pd-catalyzed N-arylation, the final closure to the 9-membered ring of N3-CTV was attempted by employing a highly reactive benzyne intermediate. Benzyne chemistry and its application to organic synthesis has been recently reviewed by Sanz. A benzyne intermediate is better described as a strained alkyne that is significantly weaker than its linear counterpart. Arynes are very reactive, even at low temperatures, and therefore must be generated in situ. Benzyne intermediates have low-lying LUMO’s making them highly reactive species. The aryne intermediate can react in a variety of cycloadditions and ene reactions with alkenes. Another effect of the low-lying LUMO is that arynes behave as a powerful electrophiles.

A benzyne intermediate can be generated from a variety of methods such as via aryl anions, zwitterions and aryl radicals. A route that is often utilized in the formation of a benzyne intermediate is the elimination of a leaving group in the ortho-position of a metallated aromatic ring. Aryl anions can also be generated from o-metallation of aromatic halides and triflates with strong bases. Additionally, a benzyne
intermediate may be generated from an aryl radical. For example irradiation of 1,2-diiodobenzene has been shown to lead to benzyne derived products.102 Lastly, the zwitterions derived from anthranilic acids have been employed to produce arynes. Anthranilic acids are readily diazonated when mixed with an alkyl nitrile in an aprotic solvent leading to the formation of a benzenediazonium-2-carboxylate. Subsequent loss of N\textsubscript{2} and CO\textsubscript{2} lead to the aryne intermediate (Scheme 19).103 The anthranilic acid is noteworthy in preserving an aryl bromide through the reaction.

SCHEME 19 - Formation of a Benzyne Intermediate Through a Zwitterion

![Scheme 19](image.png)

Arynes undergo many different reactions, making them extremely useful in organic synthesis. Some examples include pericyclic reactions e.g. benzyne intermediates readily undergo Diels-Alder cycloadditions with \textit{cis} dienes such as furan. Similarly, arynes can participate in [2+2] cycloadditions with alkenes and carbon-heteroatom double bonds as well as [3+2] cycloadditions with stable 1,3-dipolar compounds.
Nucleophilic addition to arynes has been widely used in the synthesis of complex organic molecules. Even neutral nucleophiles will readily add to a benzynne intermediate.98,104,105 Benzyne cyclization,106,107 in which the nucleophile is a substituent attached to the aryne intermediate is a simple way to construct benzo-fused carbocycles and heterocycles.98 Biehl and coworkers have shown the preparation of five and six-membered heterocycles by nucleophilic addition to arynes and have also suggested the importance of nucleophilic addition to arynes in the synthesis of seven and eight-membered rings that contain heteroatoms, including sulfur and nitrogen.108 Further, Larock showed how N-arylation could be accomplished without transition metals by enabling amines, sulfonamides and other substrates to react with arynes generated from o-silylaryl triflates.109-111

The proposed mechanism for the benzyne cyclization to the 9-membered N,N’-dimethyl N3-CTV derivative is shown in Scheme 20. A strong base abstracts a relatively acidic aniline proton, then abstracts a proton ortho to the halogen leaving group generating the aryne intermediate 23. The aryne may then be attacked by the nitrogen nucleophile of the terminal aniline. Molecular models have shown that the orbital overlap is ideal for the formation of the desired 9-membered cyclophane.
In the attempted closure via a benzyne intermediate to the 9-membered cyclophane employing KDA as the base, in refluxing THF, a methyl shift was observed producing a 6-membered phenazine derivative 24 instead of the desired triaza N3-CTV derivative (Scheme 21).
Preliminary data was encouraging, as MS data showed an MH$^+$ of 302 suggesting that the N3-CTV had indeed formed. The 1H NMR data indicated an unsymmetrical molecule with 7 unique aromatic hydrogens rather than the six protons that one would expect for the N3-CTV target from the molecule’s high 3_{cv} symmetry. Also, there were two different methyl peaks present in the 1H NMR. In the target N3-CTV both methyl protecting groups are equivalent, therefore further characterization was needed. Crystals of the HCl salt were formed from DCM/Hex and the identity of the methyl-shifted phenazine derivative was confirmed by single crystal X-ray analysis (Figure 12).
The phenazine by-product was unexpected since molecular models predicted a clean overlap of orbitals to form the 9-membered ring, yet the reaction proceeds exceptionally well, with only the phenazine derivative as the major product formed and isolated, with no further purification required. It is hypothesized that the methyl shift proceeds either through an intermolecular or intramolecular $S_{N}2$ dealkylation. Table 9 outlines the different reaction conditions utilized in the attempted benzyne closure. Halobenzenes are generally unreactive, requiring the use of a very strong base. Since alkyllithium reagents are known to participate in lithium-halogen exchange which precludes the formation of the benzyne intermediate, KDA was employed as the base for all of the benzyne reactions. KDA was generated in situ with KH and N,N’-diisopropylamine (DIPA) in THF, followed by addition of the triarylamine substrate. In all trials the base and solvent were kept constant while the halogen leaving group and temperature were varied. The mechanism by which the methyl shift occurs appears to be
dependent on both the halogen present and the alkyl group protecting the internal nitrogen.

When the reaction was conducted between -78°C to rt (Table 9, entry 1) the result was a 96% recovery of starting material. The reaction mixture was then heated to reflux, (Table 9, entry 2) and the methyl shift was observed, resulting in the 6-membered phenazine derivative 24. Thus the benzyne intermediate had formed and the alkyl shift had occurred. We did not know whether the benzyne formation or the alkyl shift occurred first. Our initial assumption was that the benzyne would react with the less hindered and more nucleophilic deprotonated terminal aniline rather than the methyl-protected internal aniline. In an attempt to slow the rate of the S_N2 reaction, with the assumption that demethylation preceded and was essential for phenazine formation, the incorporation of a more sterically hindered protecting group on the internal nitrogen was considered. Most attempts at incorporating a bulkier protecting group proved to be unsuccessful with the exception of n-butyl bromide that was added to compound 20 in 56% yield with KH in DMF at 80°C over 2 hours to give N-methyl-N’-butyl triaryl derivative 25. The n-butyl derivative, 25, was reduced to the triaryl n-butylamine 26 employing CuCl, KBH$_4$, in dry MeOH to give the aniline in quantitative yield (Scheme 22).
When the triaryl n-butyl derivative 26 was subjected to the same set of benzyne conditions (KH, DIPA, THF, reflux), the alkyl shift was not observed and only starting material was recovered (Table 9, entry 3) which suggests that the benzyne formation is somehow dependent upon prior alkyl shift since the N,N'-dimethyl derivative did afford the methyl-shifted phenazine under the same conditions. Alky transfer of the butyl group was seen only when the reaction was conducted in a sealed pressure vessel at 95°C (Table 9, entry 4) with concomitant formation of the phenazine derivative 24. The temperature difference between the methyl and butyl shift are consistent with a 50-fold difference in the rate of reaction for a methyl versus primary alkane in an S_{N2} type reaction. Based on these results, it is hypothesized that the rate of dealkylation in the case of R = Me is faster than the rate of the benzyne formation indicating the following sequence of events: first, the terminal aniline is deprotonated followed by intermolecular or intramolecular dealkylation. Then the benzyne intermediate is formed enabling the closure to the 6-membered phenazine derivative (Scheme 23). The terminal aniline nitrogen, N3 is more basic, therefore the equilibrium would be to the right towards N2, but this begs the question of why N1 is not dealkylated? The relative pKa of N1~N2; which suggests the possibility of either a dynamic equilibrium between N1 and N2 which is not satisifying
since the phenazine is N1-CH3 and not a mixture of N1-CH3 and N1-H. This suggests
the possibility of an intramolecular transfer.

**SCHEME 23 - Proposed Mechanism for the Formation of the 6-membered Phenazine
Derivative From N,N'-Dimethyl Derivative**

![Scheme 23 Image]
We were encouraged by the lack of alkyl shift with \(R = \text{Bu} \) and reasoned that if the benzyne could be formed under milder conditions then \(\text{N}_2 \) would remain protected by the \(n \)-butyl group and circumvent 6-membered ring formation. We therefore decided to change the halogen from chlorine to fluorine. Rao and coworkers suggested that the more electronegative the halogen used as a leaving group in the formation of a benzyne intermediate, the better it will stabilize the negative charge placed on the adjacent carbon.\(^{112}\) Thus employing a fluorine atom as a leaving group will form the benzyne intermediate faster than a using a chlorine or bromine. Therefore, we substituted the chlorine atom with a fluorine (Table 9, entry 5) by employing the same 6-step linear synthesis, beginning with \(o \)-fluoroiiodobenzene and \(o \)-nitroaniline in a Buchwald-Hartwig N-arylation to give 2-fluoro-2'-nitrodiphenylamine 27 in 53% yield after purification by column chromatography (Scheme 24). The synthesis was carried out in exactly the same way as it was for the chlorine and bromine in chapter 3. The amine was protected by methylation using KOH and \(\text{Me}_2\text{SO}_4 \) in refluxing acetone\(^92\) to give the \(\text{N} \)-methyl diphenylamine 28 in 95% yield. Compound 28 was easily reduced employing the general method of Sanz\(^93\) using CuCl and KBH\(_4\) in dry MeOH at room temperature to give 29 in 89% yield. The aniline 29 was coupled to iodonitrobenzene through the previously established Buchwald-Hartwig conditions to produce the triaryl amine 30 in 55% yield after purification by column chromatography. Compound 30 was subjected to methylation by KH and MeI followed by reduction of the nitro group with CuCl and KBH\(_4\) to give products 31 and 32 respectively. When the fluoro triaryl derivative 32 was subjected to benzyne conditions, KDA in refluxing THF, the resulting product was the
phenazine derivative in 98% isolated yield. The overall yields of the Buchwald-Hartwig couplings are lower than those for the chlorine and bromine derivatives, but they are clean reactions and the remaining mass balance is recovered SM for both coupling reactions.

SCHEME 24 - Linear Synthesis of the Fluorinated Triarylamine 32

The formation of phenazine derivative 24 with a fluorine halogen led us to introduce an n-butyl protecting group on N2 as was done previously with compound 25. The n-butyl protecting group was added to the fluoro triarylamine, 30, using KH and n-butyl bromide in DMF at 80°C followed by reduction of the nitro group with CuCl and KBH4 in MeOH to give compounds 33 and 34 respectively. When the triarylamine
containing the fluorine and the n-butyl protecting group 34 was subjected to benzyne conditions, KDA in refluxing THF, the alkyl transfer was once again observed giving rise to phenazine 35 in 98% isolated yield, thus suggesting that the formation of the benzyne intermediate precedes that of the alkyl transfer (Scheme 25).

SCHEME 25 – Synthesis of Compound 34 Fluoro-N-Methyl-N’-Butyl Substrate

The change in the reaction sequence and the isolation of 35 suggests the intermediary of a very interesting zwitterion, 36, which appears to be formed from a neutral, tertiary amine attacking the benzyne intermediate, followed by an intra- or intermolecular S_N2 dealkylation (Scheme 26).
The formation of zwitterion 36 via attack on a benzyne by a tertiary, neutral aniline is not without precedent. A similar result was reported by Kunai and co-workers114 wherein a nucleophilic nitrogen atom of an imidazole adds to an aryne, forming a zwitterion which becomes the neutral product after abstraction of a proton, consistent with our proposed mechanism. Since the internal nitrogen (N2) of the triarylamine has no proton to abstract, dealkylation is required to lead to the neutral phenazine derivative.

In order to determine if dealkylation is dependent on prior benzyne formation, the reaction was conducted under the same conditions without a halogen leaving group present. Two different triarylamines were synthesized without a leaving group. The first triarylamine derivative contained methyl groups on both nitrogens 37, while another triarylamine derivative contained a methyl group and an n-butyl protecting group 38. When compound 37 was subjected to KDA in refluxing THF, double demethylation was
observed in addition to a methyl group present on the terminal aniline (Scheme 27). This result suggests dealkylation can occur independent of benzyne formation, at least when the N-substituent is a methyl group. It is surprising that both methyls were removed given that in previous reactions the methyl-protecting group on N1 remained in place. This shows that the diisopropylamide base may function as the nucleophile in demethylation. Furthermore, it demonstrates that demethylation is slower than phenazine formation and that once the phenazine forms, the phenazine N-methyl at the 2-position does not undergo dealkylation. This also suggests that the lability of the N1-methyl group is precluded by prior formation of the phenazine, i.e. the N1-methyl group is more resistant to dealkylation after formation of the phenazine, as expected from our initial theory. Thus, N1-dealkylation is slower than phenazine formation.

SCHEME 27 - Intermolecular Double-Demethylation

When aniline 38, containing both N1-methyl and N2-butyl groups but no halogen was subjected to KDA in THF at reflux, the observed product only showed alkyl shift of the N1-methyl group to the terminal aniline. The n-butyl group remained on the nitrogen in the N2 position, as observed by 1H NMR. This result indicates that at least one demethylation occurs through an intermolecular process and that the methyl shift from
the nitrogen in the 1 position to the terminal aniline nitrogen in the 3 position need not be
transferred directly, which is unlikely given the angle of attack is not ideal for an S_{N2}
reaction for the proximal N2-methyl. In addition, alkyl shift of the n-butyl protecting
group may be dependent on the formation of the benzyne intermediate as noted above.
Therefore, the non-halo experiment demonstrates that the alkyl shift can occur without
benzyne formation and indicates a difference in reaction sequences dependent upon the
halogen present and the N2-protecting group.

**SCHEME 28 - Attempted Dealkylation of Butyl Protecting Group in the Absence of a
Halogen**
TABLE 9 - Attempted Benzyne Cyclization to N3-CTV

<table>
<thead>
<tr>
<th>Entry</th>
<th>Starting material</th>
<th>Temp.</th>
<th>Product formed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>![Image]</td>
<td>-78°C to r.t.</td>
<td>![Image] 96% recovered SM</td>
</tr>
<tr>
<td>2</td>
<td>![Image]</td>
<td>r.t. to 66°C</td>
<td>![Image] 78-98%</td>
</tr>
<tr>
<td>3</td>
<td>![Image]</td>
<td>r.t. to 66°C</td>
<td>![Image] 96% recovered SM</td>
</tr>
<tr>
<td>4</td>
<td>![Image]</td>
<td>r.t. to 95°C</td>
<td>![Image] 63%</td>
</tr>
<tr>
<td>5</td>
<td>![Image]</td>
<td>r.t. to 66°C</td>
<td>![Image] 87%</td>
</tr>
</tbody>
</table>
It is unclear whether the S_N2 attack on the alkyl group occurs intra- or intermolecularly.

One argument against an intramolecular S_N2 dealkylation is that the angle of attack is not linear, whereas a linear, back-side attack is possible for an intermolecular reaction (Scheme 29).

SCHEME 29 - Intermolecular vs. Intramolecular Dealkylation

Possible future experiments include labeling studies that should enable us to determine whether the dealkylation is occurring intra- or intermolecularly. For example, each protective N-alkyl group could be labeled with either deuterium or ^{13}C on the same triarylamine. This labeled compound would be mixed with unlabeled starting material and the mixture would be subjected to the benzyne conditions in the same reaction. If
both labels remain on the same phenazine derivative, then the alkyl shift is taking place by an intramolecular alkyl transfer. If labeled alkyl groups end up on different phenazine derivatives, the shift is intermolecular (Scheme 30).

SCHEME 30 - Proposed Labeling Experiment to Determine if the Alkyl-Shift is Intra- or Intermolecular

Mechanistically, it was hoped that the benzyne intermediate would be a very clean route to the desired N3-CTV. Models suggested that overlap of the benzyne orbitals would be ideal for the final cyclization step of the linear synthesis. However, when NMR spectra from the benzyne reactions are compared with those of the purified N,N'-dimethyl N3-CTV target molecule isolated from Buchwald-Hartwig N-arylation conditions, there is no trace of the 9-membered cyclophane that is detected in the crude mixtures.
Attempted macrocyclization through a benzyne intermediate however did efficiently produce the alkyl-shifted phenazine derivatives. The alkyl-shifted phenazine derivative has been isolated in 78-98% depending on the halogen and alkyl group present. The alkyl shift appears to be dependent upon two factors: the halogen present and the alkyl group employed as the protecting group for the internal nitrogen. It has been hypothesized that when the double-methylated chloro triarylamine derivative is subjected to benzyne conditions, dealkylation occurs by an intermolecular $S_{N}2$ process and is not dependent on the formation of the benzyne intermediate. On the other hand, when the fluoro triaryl derivative containing an n-butyl group protecting the internal nitrogen is subjected to benzyne conditions, it appears that the butyl shift is dependent on prior benzyne formation. Further studies will be conducted in order to determine if the alkyl shift is the result of an intermolecular or intramolecular mechanism.
CHAPTER 5

DERIVATIVES OF N3-CTV AND FUTURE WORK

Demethylation

The goal of this research was to synthesize tribenzo-1,4,7-triazacyclononatriene, N3-CTV, and derivatives thereof. With the N,N’-dimethyl N3-CTV in hand, efforts were focused on the dealkylation of the N,N’-dimethyl N3-CTV derivative in order to obtain the tris (NH) N3-CTV. Common demethylation conditions include a strong acid, HCl or HBr, and heat wherein demethylation occurs via an S_N2 mechanism after protonation of the nitrogen. The N,N’-dimethyl N3-CTV was subjected to treatment with HBr in AcOH at reflux. The reaction led to degradation of the starting material presumably due to protons adding to the aromatic rings in addition to the aniline. A trace of the presumed mono-demethylated N3-CTV was detected by both TLC and ^1H NMR (δ 2.69) but was not isolated.

We decided to investigate alternative methods for demethylating the N,N’-dimethyl N3-CTV derivative. Recently, there have been several accounts of LAH used for demethylating amines. The mechanism by which demethylation occurs is a 1-step
S\textsubscript{N}2 by a hydride on the methyl protecting group producing methane gas as a by-product. Unlike HBr or HCl in which a proton can add to either the aniline nitrogen or to the aromatic ring, the hydride ion can only attack the N-methyl group. Thus, by employing LAH we hoped to eliminate the degradation of starting material. Compound 6a and 1 mL (60 eq) of 1.0 M LAH in THF were brought to reflux for 2 h (Scheme 31). Following the Fieser work-up, TLC showed consumption of SM and a new spot at a low rf. Purification by column chromatography gave one compound based on TLC analysis. The 1H NMR data revealed aromatic peaks representative of a symmetrical o-substituted benzene ring showing two sets of doublet of doublets (dd) at δ 7.71 and δ 7.53 ppm due to meta-coupling of the aromatic protons. The disappearance of the methyl peak (δ 2.67) from the dimethyl N3-CTV derivative was also observed. Both the crown and saddle conformers of N3-CTV will have high 3\textsubscript{cv} symmetry, therefore the conformation of the molecule cannot be determined by NMR. X-ray analysis will be utilized for ultimate structure confirmation of the target cyclophane.

SCHEME 31 - Attempted Demethylation of N,N’-Dimethyl N3-CTV
In addition to the aromatic peaks, both 1H NMR and 13C NMR indicate a large concentration of aliphatic material, therefore it has been proposed that the N3-CTV may be complexed to a lithium ion which is also complexed to another molecule, for example THF (Figure 12). The 1H NMR shows a multiplet near δ 4.2 ppm resembling the protons adjacent to the oxygen in THF, except further deshielded. If THF were to be ligated to the lithium, the downfield shift observed in the 1H NMR is to be expected (Figure 12). Current efforts are focusing on purification and subsequent removal of the hydrocarbon material.

FIGURE 13 - Possible Structure of Lithium-Ligated Species

Apo - Functionalization and Metal Coordination

One significant improvement offered by the target N3-CTV over the parent CTV is the ability to functionalize the apex of the cyclophane utilizing the nitrogen atoms. Proof of concept was shown by methylation of the third nitrogen utilizing previously established conditions. KH and MeI in DMF at rt efficiently afford the trimethyl N3-CTV 6b in 95% yield (Scheme 32). 1H NMR reveals the high 3_{ev} symmetry with
chemical shifts δ 6.90 (12H, s), δ 2.91 (9H, s) manifesting by the similarity of protons ortho and meta to the nitrogen, leading to a fortuitous singlet for all 12 aromatic protons.

SCHEME 32 - Synthesis of the Trimethyl N3-CTV Derivative

![Scheme 32](image_url)

Derivation on the apex nitrogens can enable the N3-CTV to be attached to surfaces as well as form lariat complexes. Furthermore, apex functionalization may enable changing of the overall properties of the macromolecule including solubility, hydrophilicity and liquid crystallinity. For example, enhanced water solubility may be accomplished by attaching a carboxylic acid or an amine moiety to one or more apical nitrogens. Our group has recently shown that a lipoic acid side-arm appended to CTV-oxime enables attachment of the cyclophane onto a gold surface. When the CTV-modified surface was exposed to an organic solution containing C_{60} molecules, we were able to detect encapsulation of C_{60} presumably by two CTV-oxime molecules. Similarly, by incorporating apex-modified thiol derivatives onto N3-CTV, we should be able to attach the N3-CTV cyclophane to gold nanoparticles and gold surfaces. The ability to
functionalize the N3-CTV through the apex nitrogen atoms is one of the key advantages of the triaza cyclophane over the carbocyclic CTV scaffold from which it was derived.

Apex modified N3-CTV derivatives may have biological uses similar to that of TACN. Recall that several TACN derivatives are currently being used as metal chelaters for MRI contrast agents which bind Gd(III), and RIT drugs that bind Lu(III) and Bi(III) and have side-arm moieties that are critical for function.55,57 Future work will incorporate different functional groups on the apex nitrogens in order to mimic TACN derivatives already serving as biologically-active ligands. For example, figure 13 shows two clinically approved hepatobiliary TACN derivatives BOP-DTPA 39 and EOB-DTPA 40 currently being used as Gd-complexed MRI contrast agents.55

\textbf{FIGURE 14 - Structures of Gd-Complexing MRI Contrast Agents}

Both BOP-DTPA and EOB-DTPA are taken up by normal heptocytes in addition to cancerous cells. This characteristic is speculated to be due to the aromatic side arm which binds to the cytosolic protein in liver cells enabling better contrast between healthy
and tumorous liver cells. The rigidity and aromaticity of N3-CTV with the appropriate functionalization on the nitrogens can enable N3-CTV derivatives to potentially serve as Gd-complexed MRI contrast agents.

In addition to MRI contrast agents, Brechbiel and co-workers are currently exploring RIT drugs of similar TACN derivatives. Their development of C-NETA incorporates both a macrocyclic and a lariat side chain for metal binding. The acyclic side-arm is intended to “capture” and initiate coordination to the metal.

Additionally, we will try to functionalize the periphery of the molecule through electrophilic aromatic substitution (EAS). Classic EAS conditions, which include a strong Lewis Acid catalyst, have been shown to work on tertiary anilines. We will attempt to chlorinate the trimethyl N3-CTV by EAS (Scheme 33). The trimethyl derivative will be used in order to avoid electrophilic attack directly on the aniline nitrogens. Formation of the hexachloro derivative would offer a significant advantage, especially in terms of separation. The hexachloro N3-CTV will enable modification on the periphery of N3-CTV as with the parent CTV enabling the formation of more complex cryptands and could enable the preparation of derivatives that have crystalline properties.

SCHEME 33 - Proposed Electrophilic Aromatic Substitution of N3-CTV
Further exploitation of N3-CTV will include metal-binding studies. It is proposed that the crown-conformer of N3-CTV may be stabilized by chelating metals that prefer tetrahedral geometries. Complexation to a metal will allow the molecule to be used in a variety of ways, for example, as a redox-dependent switch enabling modulation of the cyclophanes binding properties. In order to determine if N3-CTV will bind to metals, we will first conduct a simple binding study with lithium salts. Proton and lithium NMR analysis will show whether binding has occurred if a difference in the chemical shifts of bound versus unbound N3-CTV is observed.

We will also explore building molecular tweezers from the N3-CTV scaffold. Molecular tweezers or clips are noncyclic compounds which contain cavities of flexible size and been shown to be effective synthetic receptors.120 Rigid molecular tweezers have been prepared from supramolecular scaffolds including Troeger’s base121 and from Kagan’s ether,122 that have been shown to bind aromatic substrates. N3-CTV will be synthesized with functionalization on the periphery of one benzene ring in order to form dimeric molecular tweezers (Figure 14).

\textbf{FIGURE 15} - Structure of Dimeric Molecular Tweezers
Molecular tweezers of N3-CTV can adapt either a syn or anti orientation with respect to the two bowl units. When the tweezers are in the presence of a tight-binding guest it is hoped that the equilibrium will shift towards the syn conformation mimicking the induced-fit process of an enzyme binding a substrate. The size of the linker can also be tunable to encapsulate guests of different sizes.

We have shown that the synthesis of the triazaortho cyclophane, N,N’-dimethyl N3-CTV 6a, can be achieved in 7 steps: palladium catalyzed C-N amination, followed by alkylation and reduction is reiterated in order to obtain the triaryl precursor to the final palladium-catalyzed cyclization to the 9-membered cyclophane. The synthesis of the novel azacyclophane, N3-CTV, will greatly contribute to the area of supramolecular chemistry by providing many distinct advantages over the parent CTV including greatly enhanced water solubility. The incorporation of the apical nitrogens of the N3-CTV scaffold will allow functionalization at the apex, unlike the parent CTV that is mainly functionalized along the periphery. Functionalization of the apex nitrogens can change the molecule’s overall physical properties and also enable attachment of N3-CTV onto solid surfaces such as gold. In addition, the apex nitrogens can also complex to metals, allowing stabilization of the crown conformer. Continued progress in the area of
supramolecular chemistry will provide information in the understanding of guest-host chemistry with applications in synthetic receptor design, liquid crystals and human health
CHAPTER 6

EXPERIMENTAL

All solvents and reagents were used without further purification unless otherwise noted. All solvents were distilled prior to use. All Pd-catalyzed and Cu-catalyzed reactions were conducted under an inert atmosphere of argon. All other reactions were conducted under a nitrogen atmosphere. Sorbent Technologies silica gel 60 A, 40 – 75 µm (200 x 400 mesh) was used for column chromatography. Sorbent Technologies aluminium-backed Silica gel 200µm plates were used for TLC. 1H NMR spectra were obtained utilizing either a Varian INOVA 300 or Varian GEMINI 2000 300 MHz spectrometer with trimethylsilane (TMS) as the internal standard. 13C NMR were obtained using either a Varian INOVA 300 or Varian GEMINI 2000 spectrometer at 75 MHz. CEM Discover® Microwave Model # 908005 was used in all MW reactions.
(2'-Chlorophenyl)-(2-nitrophenyl)-amine (17)

Compound 17 was synthesized according to the general procedures outlined by Tietze et al.86 A pressure tube was charged with o-nitroaniline (0.690 g, 5 mmol), o-bromochlorobenzene (0.60 mL, 5 mmol), Pd(db)\textsubscript{2} (0.144 g, 5%), BINAP (0.233 g, 7.5%), Cs\textsubscript{2}CO\textsubscript{3} (3.26 g, 10 mmol) and toluene (10 mL). The mixture was purged with Ar for 10 min at rt and the pressure tube was sealed. The reaction was placed in a pre-heating oil bath. The temperature was brought to 120°C and the reaction stirred for 24 h. TLC showed complete consumption of o-nitroaniline and the reaction mixture was filtered through a pad of SiO\textsubscript{2} using 5/5/90 EA/DCM/PE as the eluent. The solvent was removed under vacuum and no further purification was needed to give the product as an orange solid (1.24 g, 100%). 1H NMR matched the reported values.

2-Chloro-N-methyl-N-(2-nitrophenyl)aniline (18)

Following the general procedure of Wilshire,92 compound 17 (1.25 g, 5 mmol) was stirred at rt in acetone (16 mL). Freshly crushed KOH (1.23 g, 22.0 mmol) was added to the stirring mixture. After the reaction was brought to reflux, Me\textsubscript{2}SO\textsubscript{4} (2.18 mL, 23
mmol) was added dropwise via syringe over 10 min. The mixture was allowed to stir at reflux for 1 h. The reaction was cooled to rt and 20 mL of 10 M NaOH was added to the solution. After 1 hr the mixture was quenched with 10 mL H₂O and extracted 3 x 10 mL DCM. The organic layers were combined and dried over Na₂SO₄. The solvent was removed under vacuum and the mixture was placed in an 80°C oil bath under vacuum to remove excess Me₂SO₄. No further purification was needed to obtain the desired as a brown solid (1.31 g, 100%). mp 73-75 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (1H, dd, J= 8.1, 1.5 Hz), 7.54 (1H, ddd, J= 8.7, 7.3, 1.7 Hz), 7.42 (1H, dd, J= 7.8, 1.5 Hz), 7.19 (1H, dd, J=7.7, 1.7 Hz), 7.14-7.11 (2H, m), 7.06 (1H, dd, J=7.7, 1.9 Hz), 7.0 (1H, ddd, J=8.2, 7.3, 1.1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 145.0, 143.0, 133.2, 131.3, 130.9, 128.7, 127.9, 126.7, 126.2, 125.9, 120.8, 120.6, 41.1; IR (CDCl₃): 1520 (NO₂); HRMS (MH⁺) calcd for C₁₃H₁₁O₂N₂Cl 263.0509, found 263.0604.

N₁-(2-Chlorophenyl)-N₁-methylbenzene-1,2-diamine (19)

Following the general procedure of Sanz,⁹³ CuCl (0.137 g, 1.38 mmol) was added to a stirring solution of compound 18 (0.121 g, 0.46 mmol) in MeOH (4.6 mL) at rt. KBH₄ (0.174 g, 3.22 mmol) was then added in portions. The reaction stirred at rt until the solution became clear, 2-4 hr. The reaction was quenched with H₂O and extracted 3 x 15 mL 90/10 EA/DCM. The organic layers were combined and dried over Na₂SO₄ and the
solvent was removed to give the desired product as a brown oil (0.107 g, 100%). 1H NMR (300MHz, CDCl$_3$) δ 7.32 (1H, dd, J= 7.8, 1.4 Hz), 7.25 (1H, dd, J= 7.3, 1.7 Hz), 7.22 (1H, dd, J= 7.1, 1.7 Hz), 7.16 (1H, dd, J= 8.0, 1.6 Hz), 7.00-6.95 (2H, m), 6.76 (1H, ddd, J=9.3, 7.7, 1.4 Hz), 6.67 (1H, ddd, J= 8.9, 7.6, 1.5 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 147.6, 142.2, 136.9, 130.7, 130.68, 127.4, 125.5, 123.6, 121.9, 118.6, 115.8, 41.1; IR (CDCl$_3$): 3440 (NH$_2$), 3351 (NH$_2$); HRMS (MH$^+$) calcd for C$_{13}$H$_{13}$N$_2$Cl 233.0767, found 233.0791.

N1-(2-Chlorophenyl)-N1-methyl-N2-(2-nitrophenyl)benzene-1,2-diamine (20)

![Chemical structure diagram]

Compound 19 (0.842 g, 3.62 mmol), o-iodonitrobenzene (1.35 g, 5.43 mmol), Pd$_2$(dba)$_3$ (0.104 g, 5% mol), BINAP (0.170 g, 7.5%), Cs$_2$CO$_3$ (2.35 g, 7.42 mmol) and 12 mL of toluene were placed in a pressure tube. The mixture was purged with Ar at rt for 15 min. The tube was then sealed and placed in a pre-heated oil bath at 80-90°C for 30 h. When TLC showed consumption of 19, the reaction mixture was filtered through silica gel eluting with 90/10 EA/DCM. The solvent was then removed under vacuum. The product was then purified by column chromatography on silica gel eluting with 1/99 Et$_2$O/PE to afford the desired product as a red crystalline solid (0.785 g, 80%). mp 141-145°C; 1H NMR (300 MHz, CDCl$_3$) δ 9.03 (1H, bs), 8.07 (1H, dd, J=8.7, 1.5 Hz), 7.32-7.19 (4H,
m), 7.12-6.99 (5H, m), 6.90 (1H, ddd, J= 8.0, 6.9, 2.2 Hz), 6.68 (1H, ddd, J= 8.4, 6.9, 1.2 Hz), 3.16 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 147.2, 145.1, 142.4, 135.2, 131.6, 130.7, 129.5, 127.4, 126.5, 126.5, 126.0, 124.8, 124.0, 123.2, 121.7, 117.0, 115.8, 40.6; IR (CDCl$_3$) 3344 (NH), 1503 (NO$_2$); HRMS (MH+) calcd for C$_{19}$H$_{16}$N$_3$O$_2$Cl 354.1009, found 354.0961.

N1-(2-Chlorophenyl)-N1,N2-dimethyl-N2-(2-nitrophenyl)benzene-1,2-diamine (21)

A solution of compound 20 (0.405 g, 1.14 mmol) in 4 mL of DMF was added to KH (0.46 g, 3.42 mmol). Upon addition, the solution went from orange to deep purple. The mixture was stirred at rt for 10 min. MeI (0.4 mL, 5.7 mmol) was added dropwise via syringe. The reaction was stirred at rt until the solution returned to a yellow color. The reaction was then quenched with H$_2$O and extracted 3 x 15 mL EA. The organic layers were combined and washed 3 x 15 mL H$_2$O, brine then H$_2$O again to remove excess DMF. The organic layer was then dried over MgSO$_4$, the solvent was removed under reduced pressure to give the desired product as a yellow powder with no further purification necessary (0.362 g, 86%). 1H NMR (300MHz, CDCl$_3$) δ 7.63 (1H, dd, J= 8.0, 1.7 Hz), 7.36 (1H, ddd, J=8.8, 7.3, 1.8 Hz), 7.29-7.19 (2H, m), 7.12 (1H, dd, J=8.2, 1.7 Hz), 7.07-6.92 (5H, m), 6.88 (1H, ddd, J=8.2, 7.3, 1.2 Hz), 6.81 (1H, dd, J=7.8, 1.2
Hz), 3.32 (3H, s), 3.27 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 146.5, 143.5, 142.1, 138.8, 132.7, 131.0, 128.7, 127.6, 126.2, 124.2, 124.1, 123.7, 123.1, 120.4, 118.8, 38.5, 38.1; IR (CDCl$_3$) 1520 (NO$_2$); HRMS (MH+) calcd for C$_{20}$H$_{18}$N$_3$O$_2$Cl 368.1166, found 368.1091.

N^1-(2-Aminophenyl)-N^2-(2-chlorophenyl)-N^1,N^2-dimethylbenzene-1,2-diamine (22a)

Following the general procedure of Sanz,9 CuCl (0.460 g, 4.65 mmol) was added to a stirring solution of compound 21 (0.570 g, 1.55 mmol) in MeOH (15.5 mL) at rt. KBH$_4$ (0.836 g, 15.5 mmol) was then added in portions. The reaction stirred at rt until the solution became clear, 2-4 hr. The reaction was then quenched with H$_2$O and extracted 3 x 30 mL 90/10 EA/DCM. The organic layers were combined and dried over Na$_2$SO$_4$ and the solvent was removed to give the desired product as a brown oil, (0.450 g, 86%). 1H NMR (300MHz, CDCl$_3$) δ 7.3 (1H, dd, J= 8.0, 1.9 Hz), 7.15 (1H, 8.5, 7.3, 1.7 Hz), 7.06-6.88 (7H, m), 6.83-6.73 (2H, m), 6.60 (1H, dd, J=7.3, 1.5 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 147.0, 143.4, 142.2, 141.1, 136.7, 131.1, 128.2, 127.3, 124.6, 124.4, 124.3, 123.4, 123.2, 122.6, 122.5, 118.7, 116.1, 39.4, 38.6; IR (CDCl$_3$) 3441 (NH$_2$), 3368 (NH$_2$); HRMS (MH+) calcd for C$_{20}$H$_{20}$N$_3$Cl 338.1424, 338.1379.
N-Methyl-2-(10-methylphenazin-5(10H)-yl)aniline (6a)

![Chemical Structure](image)

Compound 22a (0.090 g, 0.27 mmol), Pd(dba)$_2$ (0.016 g, 10% mol), BINAP (0.034 g, 20% mol), Cs$_2$CO$_3$ (0.132 g, 0.41 mmol) in 3 mL of 1:1 toluene/t-BuOH were added to a 10 mL microwave tube. The mixture was purged with Ar for 5 min while stirring at rt. The MW settings were as follows; P = 250W, Time = 60 min, Temp = 130°C; PSI = 250. The reaction mixture was checked by TLC after each 60 min run. When TLC showed consumption of 22a, 240 min total, the mixture was filtered through a pad of silica gel with 90/10 EA/DCM. The solvent was removed under reduced pressure. The product was then purified by column chromatography eluting with DCM/PE gradient to give the final product as a white powder (41 mg, 50%). 1H NMR (300MHz, CDCl$_3$) δ 7.05-6.95 (6H, m), 6.87 (1H, d, J= 1.1 Hz), 6.84 (1H, d, J= 1.1 Hz), 6.75-6.73 (4H, m), 5.82 (1H, bs), 2.68 (6H, s); 13C NMR (75 MHz, CDCl$_3$) δ 144.2, 141.4, 140.2, 127.8, 126.1, 121.9, 121.1, 118.4, 117.5, 39.9; IR (CDCl$_3$) 3382 (NH), 1499 (C=C); HRMS (MH+) calcd for C$_{29}$H$_{19}$N$_3$ 302.1579, found 302.1573.
A solution of compound 6a (0.018 g, 0.07 mmol) in 0.2 mL of DMF was added to KH (0.028 g, 0.21 mmol). Upon addition, effervescence ensued and the solution turned a pale pinkish-purple color. The mixture was stirred at rt until effervescence ceased, about 5 min, and MeI (0.022 mL, 0.35 mmol) was added dropwise via syringe. The reaction was allowed to stir at rt for 2 h, during which the solution became faint yellow in color. The reaction mixture was quenched with deionized H$_2$O and extracted with EA (3 x 10 mL). The organic layers were combined and dried over Na$_2$SO$_4$, the solvent was removed under reduced pressure to give the product as a pale yellow oil. (0.021 g, 95% yield)

1H NMR (300MHz, CDCl$_3$) δ 6.92 (12H, s), 2.93 (9H, s); 13C NMR (75 MHz, CDCl$_3$) δ 144.0, 122.9, 121.0, 40.6; HRMS (MH$^+$) calcd for C$_{21}$H$_{21}$N$_3$ 316.1808, found 316.1799.

N1-Butyl-N2-(2-fluorophenyl)-N2-methyl-N1-(2-nitrophenyl)benzene-1,2-diamine(25)
A solution of compound 20 (0.100 g, 0.28 mmol) in 2 mL of DMF was added to KH (0.112 g, 0.83 mmol). Upon addition, the solution went from orange to deep purple. The mixture was stirred at rt for 10 min. n-butyl bromide (0.3 mL, 2.8 mmol) was added dropwise via syringe. The reaction was brought to 80°C and stirred until the solution returned to an orange color, 3 h. The reaction was then quenched with H₂O and extracted 3 x 15 mL EA. The organic layers were combined and washed 3 x 25 mL H₂O, brine then H₂O again to remove excess DMF. The organic layer was then dried over MgSO₄, the solvent was removed under reduced pressure. The crude product was purified by column chromatography using a gradient of EA/PE as the eluent to give the desired product as a red oil. (0.065 g, 56%). ¹H NMR (300MHz, CDCl₃) δ 7.57 (1H, dd, J = 8.0, 1.7 Hz), 7.40 (1H, ddd, J = 8.7, 7.2, 1.6 Hz), 7.24 (1H, dd, J = 15.4, 1.4 Hz), 7.21 (1H, dd, J = 14.8, 1.7 Hz), 7.06 (1H, dd, J = 8.1, 1.5 Hz), 7.02-6.87 (6H, m), 6.76 (1H, dd, J = 8.2, 1.7 Hz), 3.77 (2H, t, J = 8.1 Hz), 3.31 (3H, s), 1.6 (2H, m), 1.29 (2H, m), 0.90 (3H, t, J = 7.4, 7.1 Hz). ¹³C NMR (75 MHz, CDCl₃) δ 146.67, 132.78, 132.26, 131.04, 130.06, 128.36, 128.26, 127.81, 127.53, 126.29, 125.90, 125.80, 124.11, 123.98, 123.68, 120.74, 120.65, 119.11, 49.82, 33.58, 29.01, 20.14, 13.98 IR (CDCl₃) 2958 (C-H), 2929 (C-H), 2871 (C-H), 2817 (C-H), 1524 (NO₂); HRMS (M+H)+ calcd for C₂₃H₂₄N₃O₂Cl 410.1630, found 410.1640.
N^1-(2-Aminophenyl)-N^1-butyl-N^2-(2-chlorophenyl)-N^2-methylbenzene-1,2-diamine(26)

Following the general procedure of Sanz, ^93^ CuCl (0.06 g, 0.06 mmol) was added to a stirring solution of compound 25 (0.079 g, 0.2 mmol) in MeOH (2.0 mL) at rt. KBH$_4$ (0.108 g, 2.0 mmol) was then added in portions. The reaction stirred at rt until the solution became clear, 2-4 hr. The reaction was then quenched with H$_2$O and extracted 3 x 15 mL 90/10 EA/DCM. The organic layers were combined and dried over Na$_2$SO$_4$ and the solvent was removed to give the desired product as a brown oil. (0.063 g, 82%). 1H NMR (300MHz, CDCl$_3$) δ 7.29 (1H, dd, J = 7.8, 1.5 Hz), 7.15-7.00 (4H, m), 6.95-6.84 (5H, m), 6.73-6.62 (2H, m), 3.46 (5H, t, J = 7.8 Hz), 3.2 (3H, s), 1.42-1.32 (2H, m), 1.25-1.16 (2H, m), 0.82 (3H, t, J = 7.2 Hz); 13C NMR (75 MHz, CDCl$_3$) δ 147.19, 143.26, 143.18, 142.38, 135.85, 131.20, 127.45, 127.28, 125.30, 124.80, 124.49, 123.70, 122.97, 118.39, 116.35, 50.60, 40.30, 30.22, 20.49, 14.06; IR (CDCl$_3$) 3436 (NH$_2$), 3375 (NH$_2$), 2956 (C-H), 2929 (C-H), 2869 (C-H), 1491 (C=C); HRMS (M+H)$^+$ calcd for C$_{23}$H$_{26}$N$_3$Cl 380.1888, found 380.1892.
(2'-Bromophenyl)-(2-nitrophenyl)-amine (17a)

Compound 17a was synthesized according to the general procedures outlined by Tietze et al.86 A pressure tube was charged with o-nitroaniline (0.690 g, 5 mmol), o-bromoiodobenzene (0.64 mL, 5 mmol), Pd(dba)\textsubscript{2} (0.144 g, 5%), BINAP (0.233 g, 7.5%), Cs\textsubscript{2}CO\textsubscript{3} (3.26 g, 10 mmol) and toluene (10 mL). The mixture was purged with Ar for 10 min at rt and the pressure tube was sealed. The reaction was placed in a pre-heating oil bath. The temperature was brought to 120°C and the reaction stirred for 24 h. TLC showed complete consumption of o-nitroaniline and the reaction mixture was filtered through a pad of SiO\textsubscript{2} using 10/90 DCM/EA as the eluent. The solvent was removed under vacuum and product was purified by column chromatography using 1/99 Et\textsubscript{2}O/PE as the eluent to afford the desired product as bright orange crystals (1.31 g, 90% yield). Spectra match reported values.

2-Bromo-N-methyl-N-(2-nitrophenyl)aniline (18a)

Following the general procedure of Wilshire92, compound 17a (0.235 g, 0.80 mmol) was dissolved at rt in acetone (16 mL). Freshly crushed KOH (0.98 g, 3.52 mmol) was added
to the stirring mixture. After the reaction was brought to reflux, Me$_2$SO$_4$ (0.35 mL, 3.68 mmol) was added dropwise via syringe over 10 min. The mixture was allowed to stir at reflux for 1 h. The reaction was cooled to rt and 20 mL of 10 M NaOH was added to the solution. After 1 hr the mixture was quenched with 10 mL H$_2$O and extracted 3 x 10 mL DCM. The organic layers were combined and dried over Na$_2$SO$_4$. The solvent was removed under vacuum and the mixture was placed in an 80°C oil bath under vacuum to remove excess Me$_2$SO$_4$. No further purification was necessary to obtain the desired product as an orange solid (0.241 g, 98%). mp 88-92 °C; 1H NMR (300MHz, CDCl$_3$) δ 7.68 (1H, dd, J= 8.2, 1.6 Hz), 7.62 (1H, ddd, J = 7.7, 1.7, 0.6 Hz), 7.46 (1H, dt, J = 8.5, 7.0, 1.7 Hz), 7.26 (1H, dd, J= 8.5, 1.7 Hz), 7.12-6.96 (4H, m), 3.3 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 146.5, 142.9, 134.6, 133.1, 128.7, 127.2, 126.6, 126.2, 121.5, 120.6, 120.3, 111.7, 41.4.

N1-(2-Bromophenyl)-N1-methylbenzene-1,2-diamine (19a)

Reduction was accomplish according to the general procedure of Sanz. CuCl (0.267 g, 2.7 mmol) was added to a stirring solution of compound 18a (0.275 g, 0.90 mmol) in MeOH (9.0 mL) at rt. KBH$_4$ (0.485 g, 9.0 mmol) was then added in portions. The reaction stirred at rt until the solution became clear, 2-4 hr. The reaction was then quenched with H$_2$O and extracted with 3 x 25 mL 90/10 EA/DCM. The organic layers
were combined and dried over Na$_2$SO$_4$ and the solvent was removed to give the desired product as a brown oil (0.155 g, 62%). 1H NMR (300MHz, CDCl$_3$) δ 7.18 (2H, dd, J = 7.3, 1.9 Hz), 7.05 (2H, ddd, J = 8.0, 1.6, 1.4 Hz), 6.79-6.72 (3H, m), 6.65 (2H, dd, J = 8.8, 1.1 Hz), 3.77 (2H, bs), 3.18 (3H, s); 13C (75 MHz, CDCl$_3$) δ 148.8, 143.8, 134.2, 129.0, 128.9, 128.0, 127.3, 127.8, 119.2, 117.6, 115.9, 113.4, 38.6.

N1-(2-Bromophenyl)-N1-methyl-N2-(2-nitrophenyl)benzene-1,2-diamine (20a)

![Chemical Structure]

Compound 19a (0.155 g, 0.56 mmol), o-iodonitrobenzene (0.167 g, 0.67 mmol), Pd(db)$_2$ (0.016 g, 5% mol), BINAP (0.026 g, 7.5%), Cs$_2$CO$_3$ (0.365 g, 1.12 mmol) and 2 mL of toluene were placed in a pressure tube. The mixture was purged with Ar at rt for 15 min. The tube was sealed and placed in an oil bath, 80-90°C for 30 h. When TLC showed consumption of 19a, the reaction mixture was filtered through silica gel with 90/10 EA/DCM. The solvent was then removed under vacuum and the product was purified by column chromatography on silica gel eluting with 1/99 Et$_2$O/PE to afford the product as a red crystalline solid. (0.157 g, 70%) mp 90-92 °C; 1H NMR (300 MHz, CDCl$_3$) δ 9.26 (1H, bs), 8.08 (1H, dd, J = 8.5, 1.7 Hz), 7.46 (1H, dd, J = 6.2, 2.5 Hz), 7.2-7.4 (4H, m), 7.13 (2H, ddd, J = 8.8, 7.4, 2.2 Hz), 6.75 (2H, dt, J = 6.9, 1.4 Hz), 6.65 (2H, dd, J = 8.0,
A solution of compound 20a (0.565 g, 1.42 mmol) in 5.5 mL of DMF was added to KH (0.570 g, 4.26 mmol). The mixture was stirred at rt for 10 min. MeI (0.44 mL, 7.1 mmol) was then added dropwise and the reaction was allowed to stir at rt for 30 min. The reaction was then quenched with H₂O and extracted 3 x 15 mL EA. The organic layers were combined and washed 3 x 25 mL H₂O, brine then H₂O again to remove excess DMF. The organic layer was then dried with MgSO₄, and the solvent was removed under reduced pressure to give the desired product as an orange solid with no further purification necessary. (0.563 g, 86%); mp 104-107 °C; ¹H NMR (300MHz, CDCl₃) δ 7.58 (1H, dd, J = 8.1, 1.5 Hz), 7.29-7.16 (3H, m), 7.11-7.04 (3H, m), 6.91 (1H, ddd, J = 8.4, 7.4, 1.4 Hz), 6.76 (1H, dd, J = 8.2, 1.1 Hz), 6.70 (1H, tt, J = 7.3, 1.1 Hz), 3.27 (3H, s), 2.82 (3H,s); ¹³C NMR (75 MHz, CDCl₃) δ 147.7, 144.0, 143.4, 142.8, 140.0, 132.8, 129.0, 128.4, 126.5, 125.3, 124.7, 124.4, 123.5, 121.5, 117.5, 113.9, 42.2, 38.1.
N1-(2-Aminophenyl)-N2-(2-bromophenyl)-N1,N2-dimethylbenzene-1,2-diamine (22b)

Following the general procedure of Sanz, CuCl (0.576 g, 1.94 mmol) was added to a stirring solution of compound 21a (0.802 g, 5.82 mmol) in MeOH (20 mL) at rt. KBH$_4$ (1.05 g, 19.4 mmol) was then added in portions. The reaction stirred at rt until the solution became clear, 2-4 hr. The reaction was then quenched with H$_2$O and extracted 3 x 40 mL 90/10 EA/DCM. The organic layers were combined and dried over Na$_2$SO$_4$ and the solvent was removed to give the desired product as a brown oil (0.679, 92%). The product was a brownish oil (0.422 g, 88%). 1H NMR (300 MHz, CDCl$_3$) δ 7.25 (2H), 7.12-7.02 (3H, m), 6.86 (1H, ddd, J = 8.8, 7.3, 2.2 Hz), 6.67-6.56 (4H, m), 6.29 (2H, dd, J = 8.6, 1.0 Hz), 2.25 (5H, s), 2.48 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 147.7, 147.2, 142.3, 138.6, 138.4, 129.9, 128.6, 126.8, 125.3, 123.8, 122.6, 119.0, 118.5, 116.3, 116.2, 112.2, 38.5, 38.0.
N-Methyl-2-(10-methylphenazin-5(10H)-yl)aniline (24)

In an oven-dried round-bottom flask, KH (0.543 g, 4.06 mmol) was washed 3 x 5 mL dry PE under N₂ at rt. 1 mL of THF was added to the KH and stirred at rt for 5 min. Diisopropylamine (0.15 mL, 1.0 mmol) was then added to the KH and the mixture stirred at rt for 5 min. Compound 22a (0.098 g, 0.29 mmol) in THF (5 mL) was added dropwise by syringe to the KDA in THF (1 mL). The mixture was allowed to reflux for 1-2 hr until TLC showed complete consumption of 22a. The reaction mixture was quenched with 15 mL of H₂O and extracted 3 x 20 mL degassed Et₂O. The organic layers were combined and dried over MgSO₄ and the solvent was removed in vacuo. The desired product was then dissolved in 2-3 mL of Et₂O and 1 equivalent of p-toluenesulfonic acid (0.050 g, 0.29 mmol) was added to form the tosylate salt as clear crystals. ¹H NMR (300MHz, CDCl₃) δ 7.33 (1H, ddd, J = 9.2, 7.8, 1.5 Hz), 7.16 (1H, dd, J = 8.1, 1.5 Hz), 6.82 (2H, t, J = 15.7, 7.8 Hz), 6.63 (2H, ddd, J = 9.1, 7.7, 1.4 Hz), 6.41 (2H, ddd, J = 8.7, 7.8, 1.2 Hz), δ 6.34 (2H, dd, J = 7.7, 1.1 Hz), δ 5.82 (2H, dd, J = 7.8, 1.2 Hz), δ 4.45 (1H, bs), 3.01 (3H, s), 2.79 (3H, bs); ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 136.9, 131.1, 129.6, 129.2, 125.5, 121.7, 120.7, 117.5, 111.8, 111.2, 110.9, 30.2, 29.7; HRMS (M⁺⁺) calcd for C₂₀H₁₉N₃ 301.1573, found 301.1562.
N¹-(2-Benzylamino)phenyl-N²-(2-bromophenyl)-N¹,N²-dimethylbenzene-1,2-diamine (22d)

The benzyl derivative was synthesized according to the general procedures outlined by Itoh et al. To a stirring solution of 22b (0.177 g, 0.46 mmol) in THF (1 mL) was added benzaldehyde (47 µL, 0.46 mmol). The mixture stirred at rt for 5 min under an argon atmosphere. Diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (0.117 g, 0.46 mmol) in THF (1 mL) followed by Sc(OTf)₃ (0.005 g, 2%) in THF (1 mL) were added dropwise to the stirring solution. The mixture stirred overnight at rt under an argon atmosphere. The product was taken up in 10 mL EA and washed 3 x 20 mL with 5% (w/v) NaHCO₃ followed by brine. The organic layer was dried over Na₂SO₄ and solvent was removed in vacuo. Column chromatography eluting with PE afforded the desired product as a light yellow solid (0.149 g, 68%). ¹H NMR (300MHz, CDCl₃) δ 7.34-7.01 (11H, m), 6.89 (1H, ddd, J = 9.1, 7.7, 1.4 Hz), 6.65 (1H, dd, J = 7.7, 1.4 Hz), 6.58-6.50 (1H, m), 6.41 (1H, dd, J = 8.0, 1.1 Hz), 6.30 (2H, d, J = 8.0 Hz), 4.09 (1H, t, J = 10.4, 5.2 Hz), 3.73 (2H, d, J = 5.2 Hz), 3.04 (3H, s), 2.43 (3H, s); ¹³C (75 MHz, CDCl₃) δ 148.7, 147.7, 144.1, 140.0, 138.9, 138.3, 129.9, 128.8, 128.2, 127.0, 126.8, 126.5, 125.6, 123.4, 122.7, 118.5, 116.9, 116.2, 111.6, 110.7, 47.8, 38.6, 37.7.
N¹-(2-Benzylamino)phenyl-N²-(2-chlorophenyl)-N¹,N²-dimethylbenzene-1,2-diamine (22c)

The benzyl derivative was synthesized according to the general procedures outlined by Itoh et al. To a stirring solution of 22a (0.071 g, 0.21 mmol) in THF (1 mL) was added benzaldehyde (26 µL, 0.25 mmol). The mixture stirred at rt for 5 min under an argon atmosphere. AcOH (0.12 µL, 0.21 mmol) and Na(OAc)₃BH (0.067 g, 0.315 mmol) in THF (1 mL) were added to the stirring solution. The mixture stirred at reflux for 3 h. The reaction was quenched with sat. NaHCO₃ and extracted with Et₂O 3 x 10 mL. The organic layers were combined and the solvent was removed under reduced pressure. The crude product was purified by column chromatography eluting with 1/99 Et₂O/PE to afford the desired product as a light yellow solid (0.02 g, 22%). ¹H NMR (300MHz, CDCl₃) δ 7.19 (1H, d, J = 1.9 Hz), δ 7.17 (1H, d, J = 1.9 Hz), δ 7.09-6.84 (13H, m), δ 6.68 (1H, ddd, J = 8.9, 7.6, 1.4 Hz), δ 6.44 (1H, dd, J = 8.0, 1.4 Hz), δ 4.27 (1H, t, J = 5.5 Hz), δ 4.09 (2H, d, J = 5.5 Hz), δ 3.20 (3H, s), δ 3.09 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 147.5, 144.2, 142.8, 142.4, 139.7, 136.4, 131.2, 131.22, 131.18, 128.4, 128.3, 127.2, 126.9, 126.7, 124.7, 124.67, 124.4, 123.6, 123.57, 123.3, 123.0, 122.9, 122.4, 116.7, 110.6, 39.8, 39.2
N-(2((2-Chlorophenyl)(methyl)amino)phenyl)(methyl)amino)phenyl)acetamide (22e)

In a screw-cap vial, compound 22a (0.063 g, 0.19 mmol) and Et$_3$N (0.12 mL, 0.86 mmol) in 1 mL THF were stirred at 0°C for 5 min. To the stirring mixture, AcCl (0.1 mL, 0.86 mmol) was added dropwise and a ppt immediately formed. The ice bath was removed and the mixture stirred for 2 h at rt. The reaction mixture was taken up in DCM and the organic layer was washed with 1 N HCl (2 x 5 mL), deionized H$_2$O (2 x 5 mL), then brine 5 mL. The organic layer was dried over Na$_2$SO$_4$, the solvent is removed under reduced pressure to give the crude oil. Purification was accomplished by column chromatography using silica gel and eluting with a EA/PE. The gradient started with 30/70 EA/PE and increased to 50/50 EA/PE. The solvent was removed under reduced pressure to give the product as a light brown oil. (0.032 g, 44% yield). 1H NMR (300MHz, CDCl$_3$) δ 8.13 (1H, d, J = 8.0 Hz), 7.87 (1H, bs), 7.3 (1H, dd, J = 8.4, 1.5 Hz), 7.19 (1H, ddd, J = 9.3, 7.7, 1.6 Hz), 7.13-6.93 (9H, m), 2.95 (3H, s), 2.83 (3H, s), 1.88 (3H, s).
(2'-Fluorophenyl)-(2-nitrophenyl)-amine (27)

![Chemical Structure](image)

Compound 27 was synthesized according to the general procedures outlined by Tietze et al. A pressure tube was charged with o-nitroaniline (0.690 g, 5 mmol), o-fluoroiiodobenzene (0.70 mL, 6 mmol), Pd(dba)$_2$ (0.144 g, 5%), BINAP (0.233 g, 7.5%), Cs$_2$CO$_3$ (3.26 g, 10 mmol) and toluene (10 mL). The mixture was purged with Ar for 10 min at rt and the pressure tube was sealed. The reaction was placed in a pre-heating oil bath. The temperature was brought to 120°C and the reaction stirred for 24 h. TLC showed complete consumption of o-nitroaniline and the reaction mixture was filtered through a pad of SiO$_2$ using 10/90 DCM/EA as the eluent. The solvent was removed under reduced pressure and product was purified by column chromatography using 1/99 Et$_2$O/PE as the eluent to afford the final product as orange crystals (0.915 g, 78% yield). 1H NMR (300MHz, CDCl$_3$) δ 8.24 (1H, dd, $J = 8.7, 1.5$ Hz), 7.44-7.37 (2H, m), 7.24-7.18 (3H, m), 7.08 (1H, dt, $J = 2.9, 1.5, 1.4$ Hz), 6.83 (1H, ddd, $J= 7.2, 7.0, 1.2$ Hz). 13C NMR (75 MHz, CDCl$_3$) δ 158.32, 155.03, 142.25, 135.68, 126.85, 125.95, 124.72, 118.06, 116.85, 116.59, 115.98; IR (CDCl$_3$) 3345 (NH), 1609 (C=C), 1577 (C=C), 1509 (NO$_2$); HRMS (M+H)$^+$ calcd for C$_{12}$H$_9$N$_2$O$_2$F 233.0721, found 233.0727.
2-Fluoro-N-methyl-N-(2-nitrophenyl)aniline (28)

![Chemical Structure](image)

Compound 27 (0.122 g, 0.525 mmol) was stirred at rt in acetone (2 mL). Freshly crushed KOH (0.130 g, 2.31 mmol) was added to the stirring mixture. The reaction was brought to reflux and Me$_2$SO$_4$ (0.23 mL, 2.42 mmol) was added dropwise via syringe. The mixture was allowed to reflux for 1 h. The reaction was cooled to rt and 1 mL of 10 M NaOH was added to the solution. After 1 h the mixture was quenched with 2 mL H$_2$O and extracted with 3 x 10 mL of 90/10 EA/MC. The organic layers were combined and dried over MgSO$_4$. The solvent was removed under reduced pressure and the mixture was placed in an 80°C oil bath under vacuum to remove excess Me$_2$SO$_4$. No further purification was needed to obtain the product as a brown oil. (0.122 g, 95% yield). 1H NMR (300MHz, CDCl$_3$) δ 7.73 (1H, dd, J = 7.8, 1.7 Hz), 7.5 (1H, ddd, J = 8.2, 7.4, 1.7 Hz), 7.24 (1H, dd, J = 8.4, 1.2 Hz), 7.09-6.94 (5H, m), 3.33 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 157.85, 154.55, 143.02, 133.28, 125.81, 125.14, 124.61, 123.51, 122.14, 116.75, 41.05; IR (CDCl$_3$) (C=C), 1522 (NO$_2$), 1501 (NO$_2$); HRMS (M+H)$^+$ calcd for C$_{13}$H$_{11}$N$_2$O$_2$F 247.0877, found 247.0871.

N1-(2-Fluorophenyl)-N1-methylbenzene-1,2-diamine (29)

![Chemical Structure](image)
CuCl (0.150 g, 1.50 mmol) was added to a stirring solution of compound 28 (0.122 g, 0.5 mmol) in dry MeOH (5.0 mL) at rt. KBH$_4$ (0.270 g, 5.0 mmol) was then added in portions. The reaction effervesced and a black ppt formed upon each addition. Once all the KBH$_4$ was added, the reaction continued to stir at rt until the solution became clear in color, 2-4 h. The reaction was quenched with H$_2$O and extracted with 3 x 10 mL 90/10 EA/MC. The organic layers were combined and dried over Na$_2$SO$_4$. The solvent was removed under vacuum to give the produce as a light brown oil. (0.096 g, 89% yield). 1H NMR (300MHz, CDCl$_3$) δ 7.06-6.85 (6H, m), 6.76 (1H,dd, J = 7.8, 1.2 Hz), 6.70 (1H, ddd, J = 8.8, 7.7, 1.4 Hz), 3.91 (2H, bs), 3.15 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 156.53, 153.26, 142.15, 126.15, 124.71, 124.20, 121.68, 119.64, 118.76, 116.35, 116.08, 115.80, 39.97; IR (CDCl$_3$) 3452 (NH$_2$), 3351 (NH$_2$), 1608 (C=C), 1500 (C=C); HRMS (M+H)$^+$ calcd for C$_{13}$H$_{13}$N$_2$F 217.1136, found 217.1133.

N1-(2-Fluorophenyl)-N1-methyl-N2-(2-nitrophenyl)benzene-1,2-diamine (30)

![Chemical structure](image)

Compound 29 (0.096 g, 0.44 mmol), o-iodonitrobenzene (0.132 g, 0.53 mmol), Pd(dba)$_2$ (0.013 g, 5% mol), BINAP (0.021 g, 7.5% mol), Cs$_2$CO$_3$ (0.215 g, 0.66 mmol) and 2 mL of toluene were placed in a pressure tube. The mixture was purged with Ar at rt for 15 min. The pressure tube was then sealed and placed in a pre-heated oil bath at 130°C for
24 h. When TLC showed consumption of 29, the reaction mixture was filtered through a pad of SiO₂ with 90/10 EA/MC. The solvent was removed under reduced pressure and the resulting product was purified by column chromatography eluting with 1/99 Et₂O/PE to afford the desired product as a red oil. (0.082 g, 55% yield). ¹H NMR (300 MHz, CDCl₃) δ 9.12 (1H, bs), 8.05 (1H, dd, J = 8.5, 1.7 Hz), 7.34-7.05 (6H, m), 6.86-6.83 (4H, m), 6.69 (1H, ddd, J = 8.5, 7.1, 1.4 Hz), 3.21 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ xxx.xx, xxx.xx, 144.39, 142.30, 135.13, 126.39, 125.66, 124.21, 123.68, 123.55, 122.69, 122.36, 117.14, 116.36, 116.09, 115.76, 40.63; IR (CDCl₃) 3343 (NH), 1615 (C=CS), 1593 (C=C), 1573 (C=C), 1501 (NO₂); HRMS (M+H)+ calcd for C₁₉H₁₆N₃O₂F 338.1299, found 338.1306.

N¹-(2-Bromophenyl)-N¹,N²-dimethyl-N²-(2-nitrophenyl)benzene-1,2-diamine (31)

A solution of compound 30 (0.082 g, 0.24 mmol) in 2 mL of DMF was added to KH (0.100 g, 0.72 mmol). Upon addition, the solution changed color from orange to deep purple. The mixture was stirred at rt for 10 min. MeI (1.0 mL, 1.2 mmol) was added dropwise via syringe. The reaction continued to stir until the solution became bright yellow in color, 2 h. The reaction was then quenched with H₂O and extracted with 3 x 10 mL 90/10 EA/MC. The organic layers were combined and washed with 3 x 20 mL H₂O, then brine. The organic layer was dried over Na₂SO₄, the solvent was removed under
reduced pressure to give the desired product as a yellow solid with no further purification necessary. (0.082 g, 97% yield). 1H NMR (300MHz, CDCl$_3$) δ 7.62 (1H, dd, J = 8.2, 1.7 Hz), 7.34 (1H, ddd, J = 8.8, 7.4, 1.9 Hz), 7.1-6.75 (10H, m), 3.22 (3H, s), 3.14 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ ; IR (CDCl$_3$) 1606 (C=C), 1591 (C=C), 1568 (C=C), 1522 (NO$_2$), 1500 (NO$_2$); HRMS (M+H)$^+$ calcd for C$_{20}$H$_{18}$N$_3$O$_2$F 352.1456, found 352.1463.

N1-(2-aminophenyl)-N2-(2-fluorophenyl)-N1,N2-dimethylbenzene-1,2-diamine (32)

![Structural diagram]

See Synthesis of 29. 1H NMR (300 MHz, CDCl$_3$) δ 7.12 (2H, m), 7.00 (2H, m), 6.92 (3H, m), 6.78 (2H, m), 6.65 (2H, m), 6.56 (1H, dd, J = 9.2, 1.5 Hz), 3.17 (2H, bs), 3.08 (3H, s), 2.97 (3H, s); 13C NMR (75 MHz, CDCl$_3$) δ 155.68, 152.42, 145.24, 141.66, 140.81, 137.37, 137.07, 127.02, 125.59, 124.94, 124.00, 123.54, 122.60, 120.05, 119.86, 119.33, 118.75, 116.36, 116.10, 39.80, 38.44; IR (CDCl$_3$) 3435 (NH$_2$), 3346 (NH$_2$), 1612 (C=C), 1501 (NO$_2$); HRMS (M+H)$^+$ calcd for C$_{20}$H$_{20}$N$_3$F 322.1714 found 322.1728.
N°-butyl-N°-(2-fluorophenyl)-N°-methyl-N¹-(2-nitrophenyl)benzene-1,2-diamine (33)

A solution of compound 30 (0.102 g, 0.30 mmol) in 2 mL of DMF was added to KH (0.121 g, 0.91 mmol). Upon addition, the solution went from orange to deep purple. The mixture was stirred at rt for 10 min. n-butyl bromide (0.32 mL, 3.0 mmol) was added dropwise via syringe. The reaction was heated to 80°C and stirred until the solution returned to an orange color 3 h. The reaction was then quenched with H₂O and extracted 3 x 15 mL DCM. The organic layers were combined and washed 3 x 25 mL H₂O, brine then H₂O again to remove excess DMF. The organic layer was then dried over MgSO₄, the solvent was removed under reduced pressure. The crude product was purified by column chromatography using a gradient of EA/PE as the eluent to give the desired product as a red oil. (0.063 g, 53%). ¹H NMR (300 MHz, CDCl₃) δ 7.57 (1H, dd, J = 8.1, 1.5 Hz), 7.34 (1H, ddd, J = 8.7, 7.3, 1.7 Hz), 7.11-6.77 (9H, m), 3.59 (2H, t, J = 15.9, 8.0 Hz), 3.06 (3H, d, J = 1.1 Hz), 1.65-1.54 (2H, m), 1.30 (2H, s, 22.4, 14.8, 7.3 Hz), 0.88 (3H, t, J = 7.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 132.61, 132.25, 132.01, 130.05, 129.52, 129.09, 128.31, 127.81, 125.81, 125.55, 125.07, 124.05, 122.56, 121.27, 120.81, 120.33, 116.40, 116.13, 52.46, 39.16, 29.68, 20.29, 13.92; HRMS (M+H)+ calcd for C₂₃H₂₄N₃O₂F 394.1925, found 394.1939.
N1-(2-Aminophenyl)-N1-butyl-N2-(2-fluorophenyl)-N2-methylbenzene-1,2-diamine (34)

See synthesis of 22a. (0.06 g, 100%) 1H NMR (300MHz, CDCl\textsubscript{3}) \(\delta\) 7.18-6.99 (5H, m), 6.95-6.86 (2H, m), 6.78-6.71 (2H, m), 6.66-6.60 (2H, m), 6.50 (1H, ddd, \(J\) = 9.6, 8.2, 1.8 Hz), 3.38 (2H, t, \(J\) = 7.8 Hz), 3.20 (2H, bs), 2.90 (3H, s), 1.51-1.41 (2H, m), 1.32-1.20 (2H, m), 0.86 (3H, t, \(J\) = 7.3 Hz); 13C NMR (75 MHz, CDCl\textsubscript{3}) \(\delta\); HRMS (M+H)+ calcd for C\textsubscript{23}H\textsubscript{26}N\textsubscript{3}F 364.2184, found 364.2175.

N-Butyl-2-(10-methylphenazin-5(10\textit{H})-yl)aniline (36)

In an oven-dried RBF, 2 mL of THF and DIPA (0.11 mL, 0.80 mmol) was added to KH (0.300 g, 2.24 mmol) at rt. The mixture stirred for 10 min and compound 34 in 3 mL of THF was added dropwise via syringe. The reaction mixture was brought to reflux for 2 h. The reaction mixture was cooled to rt and quenched with H\textsubscript{2}O. The product was extracted with 3 x 20 mL of 90/10 EA/MC. The organic layers were combined and dried
over Na$_2$SO$_4$, the solvent was removed under reduced pressure to give the product as a green oil. (0.048 g, 87% yield). 1H NMR (300MHz, CDCl$_3$) δ 7.3 (1H, ddd, J = 8.5, 7.3, 2.3), 7.16, (1H, dd, J = 7.7, 1.4), 6.83-6.75 (2H, m), 6.62 (2H, t, J = 7.7), 6.41 (1H, t, 7.7), 6.34 (1H, d, J = 7.8), 5.81 (2H, dd, J = 7.8, 1.2), 4.37 (1H, bs), 3.12 (2H, t, J = 7.1), 3.02 (3H, s), 1.55-1.43 (2H, m), 1.36-1.21 (2H, m), 0.85 (3H, t, J = 7.3); 13C NMR (75 MHz, CDCl$_3$) δ ; IR (CDCl$_3$) 3415 (NH), 2965 (C-H), 2962 (C-H), 2870 (C-H), 1607 (C=C0, 1508 (C=C), 1482 (C=C); HRMS (M$^+$) calcd for C$_{23}$H$_{25}$N$_3$ 343.2043, found 343.2046.

N1-(2-Aminophenyl)-N2-(2-bromophenyl)benzene-1,2-diamine (14)

A pressure vessel was charged with 2,2'-dibromodiphenylamine (0.328 g, 1 mmol), o-phenylenediamine (0.54 g, 5 mmol), Pd(OAc)$_2$ (0.007 g, 5 mol %), DPEPhos (0.03 g, 7.5 mol %) and p-xylene (3 mL). The mixture stirred under and inert atm of Ar for 30 min at 80°C. NaOtBu (0.150 g, 1.5 mmol) in p-xylene (3 mL) was added to the stirring mixture. The pressure vessel was sealed and the reaction stirred at 140°C for 48 h. The reaction mixture was allowed to cool to rt and filtered through a pad of celite with Et$_2$O. Purification by column chromatography using 25/75 EA/PE as the eluent gave the product an oil. (16 mg, 6% yield). 1H NMR (300MHz, CDCl$_3$) δ 7.49 (1H, ddd, J = 8.0, 1.4), 7.31 (1H, dd, J = 8.2, 1.4), 7.17 - 7.11 (3H, m), 7.03 (1H, ddd, J = 8.8, 7.6, 1.4),
6.82 – 6.69 (4H,m), 6.62 (1H), 6.49 (1H, t, J = 4.1, 2.1), 6.42 (1H, dd, J = 8.0, 1.7), 6.01 (1H, bs), 5.91 (1H, bs), 3.84 (2H, bs).

1-(1H-Benzo[d]imidazol-1-yl)aniline (15)

A 25 mL RBF was charged with 2,2’-diaminodiphenylamine (0.110 g, 0.55 mmol), HC(O)Me)2NMe2 (0.073 mL, 0.55 mmol), and p-xylene (1.1 mL). The mixture was brought to reflux and stirred o.n. TLC revealed the presence of SM and another eq. of HC(O)Me)2NMe2 was added to the mixture and again the mixture was refluxed o.n. TLC revealed consumption of SM. The solvent was removed under reduced pressure and purification by column chromatography 1/99 NH3 in MeOH/DCM gave the product as a light brown foam. (32 mg, 28% yield.). 1H NMR (300MHz, CDCl3) δ 8.02 (1H, bs), 7.9 (1H, d, J = 8.4), 7.41-7.18 (6H, m), 6.91 (1H, t, J = 14.4, 7.2), 3.63 (2H, bs).
Andria, AP4-3-1, infusion, MeOH with PEG

xc090731-pos904 24 (0.439) AM (Cen,4, 80.00, Ar,5000.0,0.00,0.80); Sm (Mn, 1x2.00); Cm (15:24)
263.0634

TOF MS ES⁺
2.3263

Me

Cl

NO₂
Andria, AP4-6-1, infusion, MeOH with PEG

TOF MS ES+
3.60kV3
Andria, AP4-7-1, infusion, MeOH with PEG

xc090731-peso007 37 (0.676) AM (Cen, 4, 80.00, Ar, 5000, 0.00, 0.80); Sm (Mn, 1x2.00); Cn (33-40)
354.0961

TOF MS ES+
1.7985
Pulse Sequence: 12p1
Solvent: CDCl3
Ambient temperature
flip angle: 47°
GENEI-300 "port.rpt.svr.luc.c.wv"
Pulse sequence
Relax. delay 1.000 sec
Pulse 11.1 degrees
Acc. time 1.188 sec
Width 3991.5 Hz
n repetitions
absorbance
AB 3.00 61.0
FT size 32768
Total time 8 min., 48 sec
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Peer</th>
<th>Instrument Name</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG1-48-1A</td>
<td>2</td>
<td>ESI_ASI_Poe_00121009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>User Name</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IRR Calibration Status</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acquired Time</td>
<td>6/25/2019 16:31:07 AM</td>
</tr>
</tbody>
</table>

Graph: ESI Scan (0.322-0.338 min, 2 scans) Frag=210.0V AG1-48-1A.d Subtract

- Counts vs. Mass-to-Charge (m/z)
- Peaks at 157.0702, 364.1707, 711.2199
- Molecules with structures shown:
 - Cl
 - NO2
 - Me
 - N

137
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>AG1-53-1</th>
<th>Position</th>
<th>P1-A3</th>
<th>Instrument Name</th>
<th>Instrument 1</th>
<th>User Name</th>
<th>IBM Calibration Status</th>
<th>Acquired Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irq Vol</td>
<td>2</td>
<td>IsqPosition</td>
<td>ACQ Method</td>
<td>ES1 ASL Pol_0121009</td>
<td></td>
<td>Sample</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ESI Scan (0.313-0.329 min, 2 scans) Frag=210.0V AG1-53-1.d Subtract

\[
380.1802 \\
(\text{M+H})^+
\]

184.1123

\[
323.1175
\]

575.2054

Counts vs. Mass-to-Charge (m/z)
STANDARD IN OBSERVE

Pulse Sequence: 1pul
Solvent: CDCl3
Acetate temperature
ppm: up to 300
GEMINI-300 "gert.uvt.vir.due.edu"

PULSE SEQUENCE
Relax, delay 1.000 sec
Pulse: 90° Amplitude
Pulse width 4.000 sec
WHI 4500.6 Hz
16 repetitions
OBSERVED: 000.0704999 MHz
DATA PROCESS: 000
FT 122 82768
Total time 1 min, 45 sec
STANDARD IS OBSERVE

Pulse Sequences: 12p1
Solvent: CDCl3
Ambient temperature
File: appc-1-1
GENIX-200 "portpekt-sw.hec.env"

Pulse Sequence
Relax. delay 1.001 sec
Pulse 90.1 degree
Acc. time 1.166 sec
turn width 3501.5 Hz
15 repetitions
ABSORVE 0.290, 0.372610 MHz
FT size 32768
Total time 6 min, 49 sec
Pulse Sequence: 5° pulse
Solvent: DCCl3
Sample temperature: 25°C
Field: 400 MHz-1H, 100 MHz-13C
QEMAXI-300 "qort.dpt.sri.uc.edu"

Pulse Sequence
Pulse 50.0 degrees
Delay time 1.96 sec
Vidin 10761.7 Hz
1001 repetitions
Observe 1H, 4510010 Hz
Observe 13C, 39200612 Hz
Observe 31P, 100000 Hz
continuously on
Volt: 15 modulated
Data Processing
Line broaden 1.0 Hz
FT 6124 6536
Total time 2 hr, 21 min, 6 sec
Pulse Sequence: s2pul
Solvent: CDCl3
Ambient temperature
File: age-05-par
DEPT-90
PHASE
Pulse sequence
Relax delay 1.000 sec
Pulse 90.1 degrees
Spin rate 200.1 Hz
Viab 0.005 Hz
11 repetitions
OBSERVE FT 300.0751591 MHz
DATA PROCESSING
FT size 32768
Total time 8 min, 49 sec
1H NMR

archive directory: /export/home/vmm/vmm/dmr
Sample directory:
Pulse Sequence: 62ps
Solvent: CDCl3
Ambient temperature
File: qh8.3-16ar700
DMSOA-280 "raman.dpt-ver.lut.edu"

Relax delay 1.000 sec
Pulse 90.0 degrees
Acq. time 1.000 sec
With 16045.7 Hz
7714 repetitions
Chemical shift 7.00 ppm
Recover H1 299.7916173 MHz
Over 34 deg
Continuously on
WALTZ-16 modulated
data processing
Line broadening 1.0 Hz
R1 size 4530
Total time 1 hr, 34 min, 18 sec
Pulse sequence: sipul
Solvent: CDCl3
Ambient temperature
fiti: apg-30-3
GENINI-500 "port.dpi-ser.1uc.edu"

PULSE SEQUENCE
Pulse: 30°C, 1.000 sec
Pulse offset: 31.5 degrees
Amp. laser 1.016 sec
Width 400.5 Hz
100 repetitions
OBSERV. 300.075000 MHz
DATA PROCESSING
RR 48
Total time 6 min, 49 sec
Sample Name: AG1-44-L
Inj Vol: 2
Data Filename: AG1-44-L-d
Position: F1-HG
ACQ Method: ESI-APCI
SampleType: Connec
User Name:
XRM Calibration Status:
Acquired Time: 4/23/2010 18:42:10 AM

![Graph showing ESI Scan (0.240-0.256 min, 2 scans) with peaks at m/z values: 575, 2867, 300.1150, 217.1133 (M+H)+, 157.0507, 100.0761, 371.1019, 409.1619. Counts vs. Mass-to-Charge (m/z) is shown on the x-axis, ranging from 0 to 700, and the y-axis is labeled with counts ranging from 0 to 10.5.]
<table>
<thead>
<tr>
<th>Sample Name</th>
<th>AG1-44-L</th>
<th>Position</th>
<th>PI-46</th>
<th>Instrument Name</th>
<th>SampleType</th>
<th>Instrument 1</th>
<th>User Name</th>
<th>XRM Calibration Status</th>
<th>Acquired Time</th>
</tr>
</thead>
</table>

Diagram:
- ESI Scan (0.240-0.256 min, 2 scans) Frag=210.0V AG1-44-1.d
- Peaks at m/z 217.133 (M+H)^+
Pulse Sequence: 500 MHz
Solvent: CDCl3
Ambient temperature
File: gdb-37-1carban
OUMJ4309

Pulse Sequence
Pulse 59.4 degrees
Acq. time 3.790 sec
Width 10761.7 Hz
1027 repetitions
BIAS 303.5 Hz, 457.8 Hz, 652.1 Hz
DECIDE 051.3, 369.0, 394.0 Hz
Spin 5K s a
continuously on
WALTZ-16 modulated
DATA PROCESSING
Line broadening 2.0 Hz
FT size 65536
Total time 3 hr, 31 min, 9 sec
2.08

ESI Scan (0.352-0.481 min, 9 scans) Frag=210.0V AP7-24-1.d Subtract 343.2046

M+
REFERENCES

124. ap1-67-1 and ap1-71-1 were made according to the procedure listed at http://basti.borec.cz/_english/e_cui.html
VITA

Andria M. Panagopoulous, a native Chicagoan, began her career with dreams of becoming a surgeon. In pursuit of this dream, she enrolled as an undergraduate student at Chicago’s Jesuit University, Loyola. It was at Loyola where she was given the opportunity to do research in a biochemistry lab, which enabled her to recognize her true passion: research. This discovery did not mar her medical interest; rather it opened her eyes to new opportunities within the medical profession, not as surgeon, but as scientist. Motivated with her newfound passion and zeal for research, she hopes to continue her research and maximize her knowledge of synthetic organic chemistry. Specifically, she desires to focus on synthetic organic chemistry in relation to medicinal chemistry, with a wish that one day her work will have a positive impact on humanity.

Outside of the lab, Andria spreads her passion for chemistry and education as a role model and volunteer for an inner-city youth group for the young women of tomorrow. Additionally, she cultivates her personal interest through reading, maintains mental stability through yoga and ballroom dancing, and reposes with a pleasant wine and superb cuisine.