1937

Experimental Study of the Effects of Thyroidectomy on the Growth of a Spindle-Cell Sarcoma in the Albino Rat

Francis G. Kravec
Loyola University Chicago

Follow this and additional works at: https://ecommons.luc.edu/luc_theses

Part of the Medical Pathology Commons

Recommended Citation
Kravec, Francis G., "Experimental Study of the Effects of Thyroidectomy on the Growth of a Spindle-Cell Sarcoma in the Albino Rat" (1937). Master's Theses. 582.
https://ecommons.luc.edu/luc_theses/582

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1937 Francis G. Kravec
EXPERIMENTAL STUDY OF THE EFFECTS OF THYRODECTOMY ON THE GROWTH OF A SPINDLE-CELL SARCOMA IN THE ALBINO RAT.

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Loyola University.

by
Francis George Kravec
Department of Pathology
1937
ACKNOWLEDGEMENT

I wish to express my appreciation to Doctor F. A. McJunkin for his guidance in the fulfillment of this study and for the many courtesies he has accorded me throughout the year.

I am grateful to R. D. Templeton for his contribution of many thyro-parathyrodecomized rats and for the valuable instruction he gave me on the technic of the thyro-parathyrodecomy operation.

To Mr. L. M. Herdegen I offer my thanks for his kind co-operation in the preparation of material for histological study.
PURPOSE OF PROBLEM

This experiment was conducted in order to study the effect of thyro-parathyroidectomy on the growth of a spindle-cell sarcoma in the albino rat.

LITERATURE

Published reports on the effect of thyroidectomy on neoplastic growth present divergent opinions. Rohdenburg, Bullock, and Johnson,\(^{(1)}\) in a series of twenty-nine thyroidectomized rats, found at forty days after inoculation with Flexner-Jobling carcinoma 52% of "cures" against only 16% of regressions in the control group. Murohara\(^{(15)}\) reported that removal of the thyroid restrained the growth of a transplantable rabbit sarcoma, while Matsuaka\(^{(8)}\) reported an opposite effect. Murohara\(^{(6)}\) observed that a chicken sarcoma, implanted in a chick, was first retarded by thyroidectomy but later accelerated.

Shibata\(^{(6)}\) studied the effect of thyroidectomy on epitheliomatous growths, induced on the rabbit
ear by painting with a volatile neutral component of coal tar. The animals were thyroidectomized and tar painting began from 7-10 days later. On the basis of a limited number of animals, Shibata believes that the thyroidectomized rabbits showed resistance to epithelial proliferation after tarring. There was no proliferation of the prickle of basal cell layers in the thyroidectomized rabbits. One scientist observed that thyroidectomy had no effect on those tumors in rabbits produced by tar. Karuicki, on the other hand, concluded that thyroidectomy stimulated tar cancer in the rabbit. He used 35 animals in his experiments.

Bischoff and Maxwell inoculated 13 thyro-parathyroidectomized rats with rat carcinoma 256 and observed no significant difference in percentage of takes, rate of tumor growth, or final mortality as compared with 16 litter male controls. Levine and Kugel showed the average rate of growth of mouse sarcoma 180 in the thyroidectomized mice was greater than in the controls, while the average size of tumors in the thyroidectomized mice was smaller than in the controls. Reiss and Balent observed that the Jensen rat sarcoma grew poorly, or not at all, in thyroidectomized animals. Yana using 12 rats found that
thyroidectomy inhibited the growth of the Honda rat sarcoma.

Nishida(14) in his recent experiments, found the growth of the Kato rabbit sarcoma was somewhat inhibited when the thyroid was removed seven days before tumor inoculation, one day of inoculation, or ten days after inoculation or when the functional activity of the gland had been diminished by X-Ray irradiation.

METHODS AND MATERIALS

Albino rats of Wistar Institute strain were thyro-parathyroidectomized in the usual manner. Inoculations were made bilaterally into the groin pockets, each litter (or group) being inoculated from the same tumor. The implants were made 1 to 197 days after thyroidectomy. The necks of all animals were examined for possible presence of thyroid gland tissue after completion of the experiment.

Observations and measurements of tumor growth were made bi-weekly beginning the fifth day after inoculation to complete regression of tumors or death of the animal. The measurements were made with a caliper in one direction parallel to the surface of the skin.
The tumor used in this experiment is a spindle-cell sarcoma which arose spontaneously in a rat uterus at the Loyola University School of Medicine. It has been transplanted during the past three years into more than 1000 rats. Successfully inoculated tumors in normal animals did not regress. This indicates that a spontaneous regression of this tumor, if it does so occur, is very uncommon.

RESULTS AND DISCUSSION

In table I where the tabulation is by litters (or groups) the four longest post-thyroidectomy groups (1, 2, 3, 6) show 18 successful takes, 14 of which completely regressed. This high-percentage (17%) of regressions in a group where the shortest post thyroidectomy period was 112 days is in contrast with 30% of regressions in all remaining successfully inoculated rats with shorter post-operative periods.

In both groups it is seen that an initial inoculation may fail and a second one succeed; the same is also true for normal control animals. This failure to take may be due to accidental introduction of bacteria into the pocket.

There is an usual tendency for the second inocu-
ulation tumors to regress in the rats with one unsuccessful inoculation. This may be due to the fact that an average of twenty days has been added to the thyroidectomy inoculation period. A possibility exists that the first inoculation has immunized the animal against the progressive growth of a successful tumor take.

In all, 30 litters (or groups) consisting of 237 rats were used. The thyroidectomized rats had 136 takes with 50 complete regressions. In the 40 controls there were 36 takes and no regressions.

In order to establish the regression of the tumor it was necessary that the inoculated tumor progressively reach a size of 15-15 mm. before starting to shrink. Microscopic sections of biopsy snippings of 30 regress- ing tumors showed sarcoma without exception. The regressions were almost always completely by the end of the third post-inoculation week and were usually accomplished without ulceration. Those few which adhered to the skin became ulcerated. The operated rats that suffered no regressions and the controls died with large ulcerating tumors.

Great importance has been shown on the regression of well established tumors because this phenomenon appears to represent a condition of maximum resistance.
8.
to tumor growth. In the thyro-parathyroidectomized rats that showed no regression there is evidence of retarded tumor growth. Thus on the 21st post-inoculation day the average tumor diameter in these rats was 27.8 mm. as compared with 35 mm. in the control animals. Measurements in the 7th, 14th, 28th and 35th post-inoculation days likewise showed larger tumors in the controls.

Greatest resistance to tumor growth as manifested by complete regressions is seen best when all tissues, including the endocrine system, have been adjusted to the thyroid free state. Judging by the inhibiting effect on tumor growth, the best way to arrive at the thyroid free state is to operate at weaning time. This time element may explain the difference in results obtained by Rohdenburg and co-workers, and by Bischoff and Maxwell.

There is considerable evidence that removal of another endocrine gland, the hypophysis, retards and inhibits tumor growth. Hayashi found that hypophysectomy inhibited the growth of a transplantable rabbit sarcoma. Ball, Samuels and Simpson reported a smaller percentage of takes and a retardation of growth of Walker mammary carcinoma in hypophysectomized rats. Reiss, Druckery, and Aschwald hypophysectomized 250 rats and inoculated each with the Jensen sarcoma. In all the rats, tumors grew for three weeks and underwent regression and
McRven and Thomson found that hypophysectomy retarded but did not prevent growth of Walker rat tumor. Samuels and Ball confirmed this report and recently using autogenous tumors produced by subcutaneous injections of 1, 2, 5, 6 dibenzanthracine in olive oil showed a markedly slower rate of growth following pituitary removal than tumors in control animals. The majority of these workers believed that the retardation of tumor growth in the hypophysectomized animals is dependent upon the absence of the beneficial direct effect of the pituitary secretion. The experimental data, here compiled, suggests the possibility that the lag in tumor growth in hypophysectomized rats may be a secondary effect resulting from the absence of the thyrotropic substance of pituitary origin.

It is impossible to state at the present time what role the absence of the parathyroids played in the results obtained. A review of the literature reveals very little along this line of research. Park concluded from his experiments that parathyroidectomy gave a slight decrease in the rate of growth of the Flexner Jobling rat carcinoma in the first days but later the effect was the same as in the controls. Inuzuka found that a partial extirpation of the parathyroids increased the rate of tumor growth.
CONCLUSION

In a series of thyro-parathyroidectomized rats inoculated with a spindle-cell sarcoma the tumors completely regressed in 37%. In the controls none regressed. The rate of tumor growth was slower in the thyroidectomized animals than in the controls.
### TABLE I

<table>
<thead>
<tr>
<th>Letter group</th>
<th>Rats in ea. litter</th>
<th>Age at opera.</th>
<th>Age at inoc.</th>
<th>No. of takes on lst inoc.</th>
<th>No. of regressions on lst inoc.</th>
<th>Result of 2nd inoc. when lst inoc. did not tumors take.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5e</td>
<td>27</td>
<td>150</td>
<td>5e</td>
<td>5e</td>
<td>4T, 3R</td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>27</td>
<td>150</td>
<td>5e</td>
<td>5e</td>
<td>2T, 2R</td>
<td></td>
</tr>
<tr>
<td>6e</td>
<td>38 (4L)</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2e</td>
<td>27</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9 (4e, 5c)</td>
<td>70</td>
<td>71</td>
<td>7 (2e, 5e)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6e</td>
<td>60 (5L)</td>
<td>257</td>
<td>3e</td>
<td>0</td>
<td>1T, 1R</td>
<td></td>
</tr>
<tr>
<td>6 (3e, 3c)</td>
<td>90</td>
<td>91</td>
<td>2(1e, 1c)</td>
<td>0</td>
<td>1eT, 1R</td>
<td></td>
</tr>
<tr>
<td>5e</td>
<td>95</td>
<td>96</td>
<td>5e</td>
<td>0</td>
<td>1T, 1R</td>
<td></td>
</tr>
<tr>
<td>10e</td>
<td>100 (3L)</td>
<td>105</td>
<td>6e</td>
<td>0</td>
<td>1T, 1R</td>
<td></td>
</tr>
<tr>
<td>6e</td>
<td>105 (4L)</td>
<td>106</td>
<td>6e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4e</td>
<td>33</td>
<td>87</td>
<td>3e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>21 (17e, 4c)</td>
<td>26 (5L)</td>
<td>72</td>
<td>9(5e, 4c)</td>
<td>0</td>
<td>9T, 9R</td>
<td></td>
</tr>
<tr>
<td>6e</td>
<td>29</td>
<td>81</td>
<td>2e</td>
<td>0</td>
<td>2T, 1R</td>
<td></td>
</tr>
<tr>
<td>3e</td>
<td>40</td>
<td>97</td>
<td>1e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7 (6e, 1c)</td>
<td>24 (IL)</td>
<td>74</td>
<td>6(5e, 1c)</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td>31 (5L)</td>
<td>85</td>
<td>5e</td>
<td>0</td>
<td>4T, 4R</td>
<td></td>
</tr>
<tr>
<td>4 (1e, 3c)</td>
<td>50</td>
<td>71</td>
<td>2c</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>15e</td>
<td>27 (6L)</td>
<td>36</td>
<td>11e</td>
<td>4e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8e</td>
<td>27 (4L)</td>
<td>71</td>
<td>4e</td>
<td>1e</td>
<td>1T, 1R</td>
<td></td>
</tr>
<tr>
<td>12 (10e, 2c)</td>
<td>25</td>
<td>92</td>
<td>3e</td>
<td>1e</td>
<td>1T, 1R</td>
<td></td>
</tr>
<tr>
<td>7e</td>
<td>26</td>
<td>105</td>
<td>1e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6e</td>
<td>25</td>
<td>107</td>
<td>5e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>11e</td>
<td>100 (5L)</td>
<td>102</td>
<td>11e</td>
<td>2e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9e</td>
<td>100 (5L)</td>
<td>104</td>
<td>8e</td>
<td>1e</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4e</td>
<td>100</td>
<td>133</td>
<td>2e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9e</td>
<td>100</td>
<td>112</td>
<td>2e</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13e</td>
<td>18 (4L)</td>
<td>98</td>
<td>5e</td>
<td>1e</td>
<td>5T, 5R</td>
<td></td>
</tr>
<tr>
<td>12c</td>
<td>(4L)</td>
<td>24</td>
<td>12c</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8c</td>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td>5T, 5R</td>
<td></td>
</tr>
</tbody>
</table>

Notes on table: * Averages but in no group is there more than a 10-day variation in age.

L indicates number of litters represented in the group.

T indicates takes

R indicates regressions

e thyroparathyroidectomized rats

c litter male controls
12.

BIBLIOGRAPHY

(1) Ball, Howard A. Samuels, L.T. ..... The Effect of Hypophysectomy on Antogenous Tumors. Am. J. Cancer 26: 547, 1936


13.


14.


