Molecular Properties of Cetiedil and Its Interactions with Human Erythrocytes

Chakravarthy Narasimhan
Loyola University Chicago

Follow this and additional works at: https://ecommons.luc.edu/luc_diss

Part of the Chemistry Commons

Recommended Citation
https://ecommons.luc.edu/luc_diss/2513

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Dissertations by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1987 Chakravarthy Narasimhan
MOLECULAR PROPERTIES OF CETIEDIL
AND
ITS INTERACTIONS WITH HUMAN ERYTHROCYTES

by

CHAKRAVARTHY NARASIMHAN

A Dissertation Submitted to the Faculty of the Graduate School
of Loyola University of Chicago in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
January
1987
ACKNOWLEDGEMENTS

The author gratefully acknowledges Dr. Leslie Wo-Mei Fung for suggesting this project and her guidance throughout the course of this work. The author would also like to thank Drs. Michael E. Johnson, Duarte Mota de Freitas, Kenneth W. Olsen and Albert J. Rotermund for their excellent suggestions and their time spent in reviewing this dissertation. The author also gratefully acknowledges Dr. Fung for providing financial support through her research grants, the Chemistry Department of Loyola University for the Teaching Assistantship and the Schmitt Dissertation Fellowship Committee for awarding the Fellowship. The author sincerely thanks Dr. Michael E. Johnson and the Research Resources Center (RRC) Faculty of the University of Illinois at Chicago for allowing the use of their NMR facility at the RRC. The author would also like to thank McNeil Pharmaceuticals, Pa., for their generous supply of cetiedil citrate throughout this project, Dr.M. Westerman of Mount Sinai Hospital of Chicago and Drs. M.E. Johnson and L. Kar of the University of Illinois at Chicago for providing with sickle cells, and the American Red Cross Blood Bank, Chicago Chapter, for normal Blood. The constant support and encouragement of the fellow graduate students are also deeply appreciated.
VITA

The author, Chakravarthy Narasimhan, is the son of P.S. Chakravarthy and Kamala Chakravarthy. He was born March 27, 1956, in Cuddalore, India.

His elementary and high school education were obtained from St. Joseph's Secondary School, Cuddalore, India.

In June, 1973, Mr. Narasimhan entered Madras University, and obtained Pre-University Education Certificate in April, 1974. He continued his studies in chemistry at Madras University and received Bachelor of Science degree in Chemistry in May, 1977 and Master of Science in Chemistry in May, 1979. The thesis for his Master's degree was, "Deamination Studies on Gelatin". During the periods of June, 1979 to July 1980, Mr. Narasimhan worked as a Lab Analyst Trainee in the Madras Fertilizers Ltd., taught junior college Chemistry, and worked as a cashier in the Indian Overseas Bank in India.

In August, 1980, Mr. Narasimhan entered Illinois Institute of Technology to further pursue the study of chemistry, with emphasis in biophysical chemistry. He received the degree of Master of Science in Chemistry, in December, 1982. While at IIT, he worked with Dr. C. Allen Bush on his thesis, "Identification, Fractionation and Characterization of Carboxyl Reduced Chondroitin Oligosaccharides".

In January, 1983, Mr. Narasimhan entered Loyola University of Chicago. He was granted graduate research assistantship during January, 1983 to August 1985. In September, 1985, he was awarded Arthur J. Schmidt Dissertation Fellowship enabling him to complete the Doctor of Philosophy degree in 1986, under the supervision of Dr. Leslie Wo-Mei Fung.

Mr. Narasimhan has been a member of the American Chemical Society and the Biophysical Society since 1983.
# TABLE OF CONTENTS

| ACKNOWLEDGEMENTS | .................................................. | ii |
| VITA | .................................................. | iii |
| LIST OF TABLES | .................................................. | iv |
| LIST OF FIGURES | .................................................. | v |

## Chapter

### I. INTRODUCTION

- Sickle Cell Anemia .......................................................... 1
- Antisickling Agents .......................................................... 2
- Cetiedil ................................................................. 4
  - Clinical Investigations on the Effects of Cetiedil on Human Erythrocytes ........................................ 4
  - The Effects of Cetiedil on Sickle Cell Morphology .......................................................... 5
  - Current Understanding of the Antisickling Mechanism of Cetiedil .......................................... 5
- Some Biophysical Methods Used in the Study of Small Molecule Interaction with Membrane Components .. 6
  - Spin Label Electron Paramagnetic Resonance (EPR) ........................................... 7
  - Nuclear Magnetic Resonance Spectroscopy (NMR) .................................................. 8
  - Ultraviolet (UV) Difference Spectroscopy ............................................. 9

### II. STATEMENT OF THE PROBLEM

- Specific Aims of the Project ............................................... 12
  - The Optical and Structural Properties of Cetiedil in Solution ........................................ 12
  - The Partitioning Properties of Cetiedil between the Membranous Lipids and Aqueous Phases ........................................ 12
  - The Binding Properties of Cetiedil to Membrane Proteins and Lipids .................................. 12
  - The Effect of Cetiedil on Water Transport across Red Cell Membranes ................................ 13
  - Significance of the Project ............................................... 13

### III. MATERIALS AND METHODS

- Sample Preparation .......................................................... 15
  - Buffers .................................................................. 15
  - Cetiedil Solution ...................................................... 15
  - Red Blood Cells Preparation ........................................ 16
  - Spin Labeled Membrane Samples ...................................... 16
  - Preparation of Homogeneous Phospholipid Vesicles .................................................. 18
Chapter | Page
--- | ---
Cetiedil-Membrane Samples | 20
Cetiedil-RBC Samples for NMR Studies | 21
Experimental Measurements | 22
Cetiedil Extinction Coefficient Measurements | 22
Critical Micelle Concentration Determination | 22
pH Measurements | 23
UV Difference Spectroscopic Measurements | 23
NMR Absorption Spectroscopic Measurement | 24
\(^{13}\)C NMR | 24
\(^{1}\)H NMR | 26
EPR Experiments | 26
Water Exchange Time Measurements | 29
Cell Volume Measurements | 29
  Determination of Hemoglobin Concentration | 29
  Cell Volume | 29
Spin-Spin Relaxation Time | 30
Measurement of Changes in the Intracellular Water Content | 30
Data Analysis | 32
  UV Difference Spectral Data Analysis | 32
  EPR Data Analysis | 34
  5-Doxyl Stearate Labeled Samples | 34
  Mal-6 Labeled Samples | 34
  Water Exchange Time Data Analysis | 35

IV. RESULTS AND DISCUSSION | 38
Molecular Properties of Cetiedil | 38
  pH Effects | 38
Extinction Coefficient of Cetiedil | 41
Cetiedil Micelles | 44
Solvent Effects on the Conformation of Cetiedil Molecules in Solution | 44
Binding Properties of Cetiedil to Membrane | 57
  Membrane Effects on Cetiedil Conformation | 57
  Cetiedil-Membrane Interaction | 66
  Cetiedil Partitioning between the Membranous Lipid and Buffer Phases | 67
    Absorption Spectral Changes Induced by Membrane Lipids | 67
    Partition Coefficient of Cetiedil in Membrane Lipid | 72
    Effect of Cetiedil on Lipid Spin Label Mobility | 77
    Effect of Cetiedil on Membrane Proteins | 78
    Effect of Cetiedil on Water Transport across Red Cell Membranes | 87

V. CONCLUSIONS | 95

BIBLIOGRAPHY | 99
# LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Spectral Parameters for NMR Experiments</td>
<td>27</td>
</tr>
<tr>
<td>2. Spectral Parameters for EPR Experiments</td>
<td>28</td>
</tr>
<tr>
<td>3. Experimental Parameters for $^1$H of Water Relaxation Time Measurements</td>
<td>31</td>
</tr>
<tr>
<td>4. Carbon Chemical Shifts ($\delta$) of Cetiedil in Different Solvents</td>
<td>52</td>
</tr>
<tr>
<td>5. Proton Chemical Shifts (ppm) of Cetiedil in 5 mM Phosphate Buffer with 150 mM NaCl with a Final pH of 6.3</td>
<td>60</td>
</tr>
<tr>
<td>6. Chemical Shift Differences of Cetiedil in Buffer and Membrane compared to $D_2O$</td>
<td>65</td>
</tr>
<tr>
<td>7. Equilibrium Binding Parameters in 5 mM Phosphate Buffer with 150 mM NaCl at pH 6.3</td>
<td>85</td>
</tr>
<tr>
<td>8. Effect of Cetiedil on the Hematocrit Values of RBC</td>
<td>88</td>
</tr>
<tr>
<td>9A. Effect of Cetiedil on the Water Exchange Time across RBC</td>
<td>90</td>
</tr>
<tr>
<td>9B. t and p Values of Student t-test of Paired Samples on Data Given in Table 9A</td>
<td>90</td>
</tr>
<tr>
<td>10. Effect of Cetiedil on the Cellular Water Content</td>
<td>94</td>
</tr>
</tbody>
</table>
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SDS Gel (5.0 % Polyacrylamide) Electrophoresis of Human Erythrocyte Membranes (A) and Simplified Membranes (B)</td>
<td>19</td>
</tr>
<tr>
<td>2. pH Profile of Cetiedil in Blood Serum (plus) and in PBS (triangle)</td>
<td>40</td>
</tr>
<tr>
<td>3. Plot of $A_{233}$ versus Concentration of Cetiedil in 5 mM Phosphate Buffer with 150 mM NaCl</td>
<td>43</td>
</tr>
<tr>
<td>4. Critical Micelle Concentration Plot of Cetiedil</td>
<td>46</td>
</tr>
<tr>
<td>5. Plot of Absorbance versus Concentration to Check the Linearity of the Instrument</td>
<td>48</td>
</tr>
<tr>
<td>6. 90 MHz $^{13}$C NMR Spectrum of Cetiedil Citrate in D$_2$O at 23 °C</td>
<td>50</td>
</tr>
<tr>
<td>7. 200 MHz $^1$H NMR Spectra of the Aliphatic Region of Cetiedil Citrate at Different Concentrations</td>
<td>56</td>
</tr>
<tr>
<td>8. 50 MHz $^{13}$C NMR Spectra of Cetiedil Citrate in the Presence of Membranes at 23 °C</td>
<td>59</td>
</tr>
<tr>
<td>9. Linewidth Correlation Diagram of Cetiedil Carbons</td>
<td>63</td>
</tr>
<tr>
<td>10. The Relationship between the Total and the Free Cetiedil Concentration in a Membrane Sample (1.33 mg/mL) in 5 mM Phosphate Buffer with 150 mM NaCl</td>
<td>69</td>
</tr>
<tr>
<td>11. Plot of $\lambda_{max}$ of 100 uM Cetiedil versus Lipid Concentration</td>
<td>71</td>
</tr>
<tr>
<td>12. Difference Spectral Titration of 400 uM Cetiedil with Human Erythrocyte Membranous Lipids in 5 mM Phosphate Buffer with 150 mM NaCl, pH 7.4 at Room Temperature</td>
<td>74</td>
</tr>
<tr>
<td>13. Double Reciprocal Plot of the UV Difference Data, 1/$\Delta$A versus 1/[Lipid]</td>
<td>76</td>
</tr>
<tr>
<td>14. The effects of Cetiedil on the Hyperfine Separation of 5-Doxyt Stearate Labeled Erythrocyte Membrane Samples in 5 mM Phosphate Buffer with 150 mM NaCl at 37 °C</td>
<td>80</td>
</tr>
</tbody>
</table>
15. Change in (W/S) of Mal-6 Labeled Erythrocyte Membranes as a Function of Free Cetiedil Concentration in a Typical Run of Paired Samples of Intact Membrane (o) and Simplified Membrane (+) Interacted with Cetiedil at 20 °C (Top Panel) and 37 °C
I. INTRODUCTION

1.1 Sickle Cell Anemia

Sickle cell anemia is a fatal disease prevalent mainly among the black population in the United States and Africa. It is also found in parts of Latin America, Greece, Italy and India. The sickled erythrocytes are more fragile than normal cells, hemolyze readily and consequently have a shorter life than normal cells (1). The chronic course of the disease is punctuated by crises in which the proportion of the sickled cells in blood capillaries is very high (2). The major manifestations of the sickle cell disease are a chronic hemolytic anemia and vaso-occlusive crises that cause severe pain as well as long term and widespread organ damage (2). Sickle cell patients have been found to have impaired growth and development and are highly susceptible to infections (3).

The disease results from the homozygous expression of a mutant globin gene (2). Individuals who receive the abnormal gene from both parents have sickle cell anemia. Those who receive the abnormal gene from one parent but its normal allele from the other have sickle cell trait. Such heterozygous individuals are usually not symptomatic since only 1% of the red cells in their venous circulation are sickled (compared to 50% in the homozygous) (2). As a result of this hemoglobin chain mutation, the solubility of the deoxygenated sickle hemoglobin (HbS) is markedly reduced, but the solubility of the oxygenated sickle hemoglobin is not affected (1). The mutation leads to "sticky" patches in both deoxy and oxy HbS. The sticky patches from two deoxy hemoglobin molecules interact to form long aggregates of deoxy HbS that distort the morphology of the red cells (1).
Abnormalities of membrane transport have also been found in sickle red cells. Deoxygenation of the sickle cells leads to an increase in passive sodium and potassium movements across the sickle cell membranes (4). This has been associated with water loss and cell dehydration. There are some investigations, however, that report no change in cell water content upon deoxygenation of sickle cells (5). Sickle cells have been found to contain high levels of calcium (6). This has been suggested to be responsible for triggering cell dehydration by creating a selective potassium-loss pathway (the Gardos phenomenon) (7). Recently, Berkowitz and Orringer found that during short periods of deoxygenation, sickling caused a balanced sodium gain and potassium loss without a change in cell water content (8). They also found that passive movements of both sodium and potassium in oxygenated sickle cells differed significantly from those in normal cells. They suggest a permanent acquired defect in the sickle cell membrane, and that potassium and water loss may not be direct consequences of deoxygenation. Tosteson and coworkers (9) found that sickle cells exposed to oxygen or carbon monoxide decrease their potassium content through a pathway for potassium transport that is activated by both cell swelling and decrease in internal pH. They also found that the same pathway was responsible for the loss of water in sickle cells and that this pathway was independent of the polymerization of sickle hemoglobin (9). Although the above findings about the mechanism of dehydration of sickle cells differ, they, nevertheless, demonstrate that membrane transport abnormalities exist.

1.2 Antisickling Agents

Although some of the molecular defects of sickle cell anemia are quite
well characterized, there is at present no specific treatment for its cure or prevention. The presence of either normal adult hemoglobin or elevated levels of fetal hemoglobin seems to protect the patients from the manifestations of the disease (2). The protective effect of the fetal hemoglobin however, is variable, and the prognostic value for measuring the levels of fetal hemoglobin is limited (2). Modifying the hemoglobin synthesis by azacytidine has been suggested to be useful (10). Of the numerous antisickling agents that have been proposed for sickle cell anemia, only few have been found to be clinically useful over the years (11). Most of the antisickling agents act by modifying the sickle hemoglobin molecule (HbS) either covalently, like potassium cyanate (12) and carbamyl phosphate (13), or noncovalently, like urea (14) and L-phenylalanine (15), to prevent deoxygenated hemoglobin from forming polymers. Since the concentration of hemoglobin is high inside the red blood cells, rather high concentrations of these agents are required in order for them to be effective. Under such conditions these reagents may be toxic. Therefore, less toxic and more effective drugs, such as the drugs affecting the red blood cell membranes may offer an alternative or supplemental therapeutic approach to the disease. Some of the membrane active drugs, like procaine hydrochloride (17) and zinc (16) inhibit sickling of the sickled erythrocytes by diluting the intracellular hemoglobin concentration through cell volume change.
1.3 Cetiedil

Cetiedil, (α-hexahydro-1H-azepinyl-1-yl) ethyl-2-cyclohexyl-3-thiophenacetate,

\[
\begin{align*}
\text{CH}_2\text{CO}_2\text{H} & \quad \text{HO} \quad \text{C} \quad \text{CO}_2\text{H} \\
\text{H}_2\text{O} & \quad \text{CH}_2\text{CO}_2\text{H}
\end{align*}
\]

belongs to the class of noncovalent, membrane active drugs. Cetiedil is a multifunctional drug that has been available in Europe since the early 70's for the treatment of ischemic leg pain due to vascular disease (18). Other pharmacological properties of the drug include vascular smooth muscle relaxation (19), inhibition of phosphate diesterase activity (20), blockade of the effects of bradykinin and serotonin (21), analgesia (22), and inhibition of platelet aggregation (23). It has also been used to inhibit the sickling of sickle erythrocytes (24).

1.3.1 Clinical Investigations on the Effects of Cetiedil on Human Erythrocyte

The use of cetiedil as an antisickling agent was first explored by Cabannes (25). He found out that cetiedil could diminish the duration and intensity of painful crises in sickle cell anemia patients. Chromium-51 survival studies of canine erythrocytes treated with 166 µM cetiedil had a $T_{1/2}$ of 16 days, compared to 18 days for cells incubated in buffer alone. Similar experiments on sickle cells showed that, for control cells, the $T_{1/2}$ was 8.9 days, and that, for the cells treated with 166 M cetiedil, it was 9.4 days (26). This indicates
that cetiedil is not toxic to the sickle erythrocytes. Furthermore, intravenous infusion of cetiedil to male volunteers indicated development of tolerance (27). Thus, cetiedil is considered as a potentially unique antisickling drug by some physicians.

1.3.2 The Effects of Cetiedil on Sickle Cell Morphology

Benjamin and coworkers observed a decrease in the irreversible sickle cells (ISC) count at 100 - 200 µM concentrations of cetiedil, but observed no effect at concentrations less than 50 µM, or greater than 500 µM (26). In another study, 400 µM cetiedil decreased the number of sickle cells under deoxygenated conditions, whereas 10 mM cetiedil decreased ISC counts and the cells became spheroidal, suggesting that ISC's as well as other cells became swollen (24). Marked (80 %) reduction of sickle cells at 100 - 500 µM cetiedil and 3 % oxygen concentration has also been reported (24). However, no significant effect was reported when 500 µM to 1 mM concentration of cetiedil was added to serum at 50 % oxygen saturation (11).

1.3.3 Current Understanding of the Antisickling Mechanism of Cetiedil

The detailed mechanism of cetiedil action on the erythrocyte is not clear. Cetiedil does not appear to affect, or to bind, to HbS. Asakura and coworkers observed a 20 % increase in hematocrit and over 10 % increase in the cell volume after incubating cells with 400 µM cetiedil at 37 °C (24). Schmidt and coworkers observed an increase in the cell sodium and water contents after incubating cells with 100 to 500 µM cetiedil (28, 29). The net sodium gain exceeded the net potassium loss. Furthermore, Berkowitz and Orringer found that cetiedil inhibits a specific increase in the
calcium-dependent potassium permeability across the red cell membrane (30, 31). They also found that cetiedil did not prevent calcium accumulation or inhibit the anion movement. It was therefore suggested that cetiedil inhibited Gardos phenomenon by preventing the opening of the potassium-specific gate in the erythrocyte membrane. Cetiedil has been found to inhibit Ca\textsuperscript{++}-dependent calmodulin interactions with membranes (32) and also calmodulin-stimulated 3', 5'-nucleotide phosphodiesterase and Ca\textsuperscript{++}-ATPase activities (33). Recently, cetiedil has been found to affect the trigger mechanism of the plasma membrane to inhibit the activation of NADPH oxidase (34). In brief, cetiedil appears to interact with erythrocyte membranes to increase cell volume.

The present study was therefore undertaken in order to better understand the molecular mechanism of cetiedil-membrane interaction.

1.4 Some Biophysical Methods Used in the Study of Small Molecule Interaction with Membrane Components

Detailed studies of the interactions of small molecules with membrane components give useful information about the binding sites and the mechanism of interactions. Some common methods that are available to study such interactions include isotopic labeling, equilibrium dialysis, ultraviolet difference spectrometry, fluorescence spectrometry, nuclear magnetic resonance and spin label electron paramagnetic resonance spectroscopy. Each of these methods has its own usefulness and gives specific information about the interaction. Many of these methods may be used concurrently to provide supplementary and complementary information about the system. Some of the major methods that were used in this study to obtain both qualitative and quantitative information about the interaction of cetiedil with the human erythrocyte membrane
components are discussed in the following sections.

I.4.1 Spin Label Electron Paramagnetic Resonance (EPR)

The EPR technique is based on the magnetic moment of an unpaired electron. Most biological systems, including erythrocyte membranes, give no obvious intrinsic EPR signal, because they have no easily detectable unpaired electrons. In order to probe the structure of biomembranes and to study their interactions with small molecules, the spin label approach is generally used (35).

Spin labeling generally refers to the introduction of stable nitroxide radicals to biological systems, such as proteins and lipids (36). Different membrane components can be selectively labeled with different nitroxide spin labels. Generally, the protein spin labels are covalently attached to the protein molecules by alkylating, acylating, sulfonylating, or phosphorylating reactions (37). The lipid spin labels intercalate amongst the lipid bilayers (38).

In this study, human erythrocyte membrane proteins were covalently labeled by the commercially available piperidinyl nitroxide derivatives of sulfhydryl reagent, N-(1-oxyl-2,2,6,6-tetramethyl 4-piperidinyl) maleimide (Mal-6). By monitoring the spectral changes of the spin labeled membranes in the presence of the interacting species, information about the binding interaction such as the equilibrium dissociation constant can be obtained (39). Under specific conditions, the labeled proteins exhibit a two-component spectrum consisting a narrow and a broad component (40). The narrow line is from the weakly immobilized (W) component and the broad line is from the strongly immobilized (S) component. The amplitude ratios of these components, (W/S), can be measured easily. The high sensitivity of the W/S ratio (41) has been used to study hemoglobin binding to membrane. This approach was used
in the present study to monitor the interaction of cetiedil with the human erythrocyte membrane proteins.

In order to study the effect of cetiedil on membrane lipids, the fatty acid spin label, (3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxyl (5-doxy1 stearate) was used and the change in the hyperfine separation of the extreme peaks (35) was monitored as a function of cetiedil concentration. The measured hyperfine separation values were used to derive information about the effect of cetiedil on the mobility or the environmental polarity of the spin label.

1.4.2 Nuclear Magnetic Resonance Spectroscopy (NMR)

The NMR technique is based on the detections of magnetic moments of nuclei with finite spin I, such as $^{13}$C and $^1$H. NMR techniques are widely used to provide structural information about molecules in solution. From the chemical shift values, the conformation of a molecule or of a particular moiety in the molecule can be assigned. Accordingly, for the present study, to obtain molecular and structural information about cetiedil in solution, the $^{13}$C NMR chemical shifts of the carbon atoms of cetiedil in D$_2$O, methanol and buffer were measured. The proton chemical shifts of different concentrations of cetiedil in buffer were also measured to obtain additional molecular information about cetiedil.

The observation of binding of a small molecule to membranes by NMR methods depends largely on the existence of a measurable change in at least one NMR parameter of the system resulting from binding. A change in the relaxation times, linewidths, chemical shifts or coupling constants of any observable nucleus may be employed (42). By this technique, it is possible to monitor the spectrum of either the small molecule or the membrane component.
and their interactions. Accordingly, to obtain molecular information about the cetiedil-erythrocyte membrane interaction, the change in the chemical shifts and the linewidths of the carbon and proton resonances of cetiedil in buffer, glycerol and membranes were measured in order to monitor the parts of cetiedil molecule that were affected upon interaction with the membranes.

NMR studies may also be used to provide information about the exchange of a molecule between two different environments (43). The proton relaxation time of water has been used to study the exchange of water between the erythrocytes and plasma (44). Water molecules inside red blood cells constantly exchange with water molecules outside (plasma). The exchange time for this process is about 10 msec at 37 °C (44). The NMR relaxation time of the protons of water inside the erythrocytes is longer than that of plasma. When plasma is doped with impermeable paramagnetic ions, such as Mn++, the water protons of plasma relax faster (<< 10 msec) by interacting with the paramagnetic ions. When this plasma water enters the cell, it would have already relaxed and when the excited water molecule inside the cell enters the plasma it would relax faster due to the presence of manganese. This would reduce the population of the excited water molecules inside the cell. By measuring the relaxation time of cell water in the presence and absence of Mn++, and from the population of water outside the cell, the exchange time for water can be calculated (44). Thus, for the present study, to investigate the effect of cetiedil on water transport across the red cell membranes, cell water exchange times were measured in the presence and absence of cetiedil.

1.4.3 Ultraviolet (UV) Difference Spectroscopy

The partitioning of amphiphilic molecules between hydrophobic and
hydrophilic phases is determined by the affinity of the molecule toward a particular environment. Several methods are available to measure the partitioning properties of these amphiphilic molecules. Some of the methods include the separation of the two phases by centrifugation (45), by filtration (46) or by dialysing out the free amphiphiles from the amphiphiles in the hydrophobic phase and determining the concentration of the free amphiphiles in the aqueous phase (47). One should exercise extreme caution in determining the free amphiphile concentration in these methods. For example, if the amphiphile solubilizes the lipid components (as in the case of chlorpromazine and methochlorpromazine (48)), then the lipid bound amphiphiles will also show up as the free amphiphile. This could lead to erroneous results in the estimates of partition coefficients (49).

Recently, a UV difference spectrometric technique was developed to determine the water/lipid partition coefficients of amphiphilic molecules (50). This method takes advantage of a shift in the absorption spectra of the amphiphilic molecule upon going from an aqueous to a hydrophobic environment. It is an equilibrium technique that does not require the separation of the bound and free amphiphile as do the separation methods of determining the membrane-buffer partition coefficients. The UV difference method is useful for any amphiphile that has an appreciable absorbance below its critical micelle concentration and whose absorbance is sensitive to change in the environment. Lower amphiphile concentrations are used in order to avoid the formation of mixed micelles with the membrane lipids (46). Partition coefficients of amphiphilic molecules such as chlorpromazine, methochlorpromazine, cis and trans parinaric acids have been obtained by this method and have been shown to be in good agreement with the values obtained
by other methods (50). Cetiedil has several chromophores that absorb UV light. The UV difference spectrometric method was used to obtain the partition coefficient of cetiedil in membranes.
II. STATEMENT OF THE PROBLEM

II.1 Specific Aims of the Project

The primary goal of this dissertation project was to study cetiedil's molecular structure and properties in solution, and its interactions with the erythrocyte membrane in order to understand its mode(s) of action with erythrocyte membrane components and to evaluate the effectiveness of cetiedil as an antisickling agent. More specifically, experiments were designed to investigate the following four major areas.

II.1.1 The Optical and Structural Properties of Cetiedil in Solution

Does cetiedil contain chromophores so that the optical properties of cetiedil in solution can be characterized by UV spectroscopic technique and used to determine the concentration of cetiedil in solution? Can we determine the structural details of cetiedil in solution and the critical micelle concentration of cetiedil in aqueous solution?

II.1.2 The Partitioning Properties of Cetiedil between the Membranous Lipid and Aqueous Phases

How do cetiedil molecules partition between the lipid and the aqueous phases? Using UV difference spectroscopy the partition coefficient of cetiedil in the lipid bilayer can be obtained.

II.1.3 The Binding Properties of Cetiedil to Membrane Proteins and Lipids

If cetiedil interacts with membrane, what are the binding properties of cetiedil to membrane proteins and lipids? Can we determine the equilibrium
dissociation constant, \( K_d \), for cetiedil-membrane proteins? Does cetiedil affect membrane lipids? Which part(s) of the cetiedil molecule are affected upon binding to the membranes?

II.1.4 The Effect of Cetledil on Water Transport across Red Cell Membranes

How does cetiedil affect the water transport across the red cell membranes? \(^1\)H NMR relaxation time measurements can be carried out to investigate the problem.

II.2 Significance of the Project

Very little is known about the detailed mechanism of drug action. Clinical investigations on cetiedil have shown an increased amount of cell cations like \( \text{Na}^+ \) and \( \text{K}^+ \). As a result of this, the cell water content increases leading to cell swelling. Since these effects are direct consequences of the alterations in membrane transport properties, it is very important to understand the specific interaction of cetiedil with red cell membranes. Although existing clinical and laboratory investigations have given some phenomenological and biochemical explanation about the drug effects on the whole blood cells, investigations with more sensitive physical methods are necessary to provide molecular understanding of the specific interactions and mode(s) of action of cetiedil in the erythrocytes. With the advent of sensitive and/or sophisticated biophysical techniques, such as spin label EPR and NMR spectroscopy, it is possible to monitor the cellular events at the molecular level. Information on the specific interactions of cetiedil with the membrane components and its effects on water transport across cell membranes may lead to the development of a more effective and more specific drug therapy for sickle cell anemia. This
investigation also serves as a model system for the general study of drug-cell membrane interactions.
III. MATERIALS AND METHODS

III.1 Sample Preparation

III.1.1 Buffers

The various buffers used in this study included the commonly used 5 mM sodium phosphate buffer at pH 8.0 (5P8), and 5 mM phosphate buffer with 150 mM NaCl at pH 7.4 (5P7.4/NaCl), or at pH 8.0 (PBS). A pH 4 solution, 5P4/NaCl, was obtained by adding a small amount of HCl to a 5 mM monobasic sodium phosphate solution containing 150 mM NaCl to give a pH value of 4.0. A 0.3 mM phosphate buffer at pH 7.6 (0.3P7.6) was used for spectrin-actin extraction.

III.1.2 Cetiedil Solution

Cetiedil was obtained from McNeil Pharmaceuticals (Spring House, PA) in the form of the citrate salt, and used without further purification.

Cetiedil is only slightly soluble in water, with a solubility of 0.5 g/dL (51). For experiments that required cetiedil concentrations higher than 0.5 g/dL, a 30 mM stock solution was prepared. For volumetric measurements, the Oxford Adjustable Sampler Micropipetting system (Lancer, St.Louis, MO) was used. The accuracy of measurement was within one microliter. 45 mg of cetiedil was added to 1 mL 5P7.4/NaCl buffer, followed by sonication for about 2 min and centrifugation at 1,075 g for 5 min to give a clear supernatant. We found that the concentration of the supernatant was much higher than 0.5 g/dL and was generally about 2.5 - 3.0 g/dL (45 - 54 mM), as determined by UV absorption measurements. Without sonication, the supernatant was cloudy. The final pH of the 30 mM stock solution was 4.0.
For the extinction coefficient determination, a precise amount of cetiedil was weighed to prepare a 150 μM solution in buffer, which was subsequently diluted with buffer to give cetiedil solutions of various concentrations, ranging from 10 to 150 μM.

For $^{13}$C and $^1$H NMR studies, cetiedil was prepared in deuterated 5P7.4/NaCl buffer. High purity D$_2$O (99.9 % D) (Norell, NJ) was used to prepare the deuterated buffer solutions. For the NMR studies of cetiedil in methanol solvent, cetiedil was dissolved in non-deuterated, reagent grade methanol. The sample of cetiedil in glycerol was prepared by adding glycerol (Baker, N.J.) to a solution of cetiedil in buffer. The viscosity of the solution was checked with a Brookfield Synchro-Lectric viscometer (Model LVT-C/P, Stoughton, MA).

### III.1.3 Red Blood Cells Preparation

Homozygous sickle blood cells were obtained from the Outpatient Clinic of the University of Illinois hospital (Chicago, ILL.) and from Dr. M. Westerman of the Mount sinai Hospital of Chicago. Normal adult human packed red blood cells were obtained from the Chicago chapter of the American Red Cross Society. The red blood cells were washed twice with 40 volumes of PBS at 1,750 g for 6 min at 4 °C.

### III.1.4 Spin Labeled Membrane Samples

Hemoglobin-free white membrane ghosts in 5P8 were prepared from normal or homozygous sickle cells, according to the methods of Dodge et al (52). Washed red blood cells were lysed and repeatedly washed (4 to 5 times) with 5P8 until white membrane ghosts were obtained. Membrane samples (usually 4
mg/mL in protein concentration) were incubated with the protein spin label N-(1-oxyl-2,2,6,6-tetramethyl 4 piperidinyl) maleimide (Mal-6) (from Aldrich, WI) at a concentration of 30-50 g Mal-6 per milligram of protein in the dark at 4 °C for 1 hour (35). Excess spin label was removed by washing with 5P8 buffer until the samples gave constant EPR signals.

Mal-6 spin labeled, spectrin-actin depleted membranes were prepared by incubation of labeled membranes at 37 °C in 0.3P7.6 buffer, to solubilize spectrin-actin, which was then removed by centrifugation (53). Modified Lowry protein assays (54) were used to determine protein concentrations. The assays were done on the intact membrane and the supernatant from centrifugation. Generally, about 30 ± 5% of the proteins were removed from the membranes to give simplified membranes, which were depleted of the spectrin-actin network. The proteins of this simplified membrane sample were mainly Band 3 protein, as shown by 5% SDS polyacrylamide gel electrophoresis (Figure 1), using the methods of Fairbanks et al (55).

A fatty acid spin probe, (3-carboxypropyl)-4,4-dimethyl-2-tridecyl-3-oxyl (5-doxyl stearate) (from Syva, CA) was also used to probe lipids in membrane ghost samples. Membrane samples in 5P8 buffer were dialyzed in 5P7.4/NaCl buffer before incubation with 5-doxyl stearate at a concentration of 100 g/mg protein for 30 min at room temperature (35). Since the membranes have about equal amounts of proteins and lipids by weight, the spin label to lipid molar ratio was about 1:6.

III.1.5 Preparation of Homogeneous Phospholipid Vesicles

Homogeneous dipalmitoyl phosphatidyl choline (DPPC) vesicles were
Figure 1. SDS gel (5.0 % polyacrylamide) electrophoresis of human erythrocyte membranes (A) and simplified membranes (B).
prepared by the method of Barenholz et al. (56). According to this procedure, 20 mg of DPPC was first dissolved in 5 mL of acetone and then dried by rotary evaporation. The sample was then lyophilized to remove all traces of organic solvent. The dry phospholipid was suspended in 5 mL of HEPES buffer (20 mM HEPES, 150 mM NaCl; pH 7.4) and vortexed vigorously for 10 minutes. To make small unilamellar vesicles, the lipid suspension was sonicated with a probe sonicator (Model W-10, Ultrasonics, N.Y.), intermittently (power level 1.5) at 0 °C for 4 minutes, followed by a 2-minute cooling period for a maximum sonication time of 30 minutes. Following sonication, the vesicle dispersion was centrifuged at 101,000 g for 55 minutes to remove large multilamellar liposomes and any probe particles. The clear supernatant, which contained the population of homogeneous minimal size vesicles, was removed. The concentration of the DPPC vesicles was determined by phosphate assay developed by Rouser et al. (57) using ammonium molybdate. Monosodium phosphate in distilled water was used to obtain calibration curve for the assay. The vesicles were stored at 4 °C and used within 3 days of preparation.

III.1.6 Cetiledil-Membrane Samples

The Mal-6 spin labeled membrane and the simplified membrane samples were dialyzed in 5P7.4/NaCl overnight. Samples of 5-doxyl stearate spin labeled membrane samples were used directly since they were already in 5P7.4/NaCl. The protein concentrations of these samples were determined, and adjusted to 4 mg/mL for the Mal-6 labeled samples, and 6 mg/mL for the 5-doxyl stearate labeled samples. Various volumes (0 - 200 µL) of 30 mM cetiledil stock solution were added to 100 µL membrane samples. Appropriate volumes of 5P4/NaCl solution (since the phosphate solution is not a good
buffer at pH 4, we simply used this as a control solution, not buffer for the acidic cetiedil solution) were added to each of the spin labeled membrane and cetiedil mixture to give a constant final volume of 300 μL. The final pH of all the samples was 6.3. The mixtures of membrane and cetiedil were then centrifuged at 38,750 g for 5 min. The supernatant of each sample was removed, and the free cetiedil concentrations in the supernatants were determined by UV absorption at 233 nm. The pellet membrane samples were used for EPR measurements.

Due to the relatively low sensitivity in the EPR studies, the concentrations of cetiedil (in the millimolar range) and of membrane proteins (in the mg/mL range) needed in this study were higher than those used clinically or in cellular studies, in which μM concentrations of cetiedil per μg/mL proteins were used (32, 33). However, the cetiedil-to-protein ratios in both cases are mmoles of cetiedil per gram proteins. In a simple equilibrium process, the interaction depends on the absolute concentrations of cetiedil rather than on the cetiedil-to-protein ratios. This is because the equilibrium will be shifted more toward the cetiedil-membrane association state at higher cetiedil concentration, and toward the dissociation state at lower cetiedil concentration. In the case of limited solubility of cetiedil in the buffer, a precise description of the cetiedil-membrane equilibrium in the buffer requires detailed information on the partitioning of cetiedil between the membrane and buffer phases. For comparison with other studies, simply the "cetiedil added-to-protein" ratio was used as a point of reference for comparison.

III.1.7 Cetiedil-RBC Samples for NMR Studies

To 350 μL of the washed RBC in PBS (85 % hematocrit), 360 μL of PBS
and 40 L of cetiedil at 7.26 mM, or 400 L of PBS as controls were added. The samples were incubated at 37 °C for 2 hours and then centrifuged at 1750 g for 6 min. 300 µL of the supernatant was removed from the vials and 20 µL of 20 mM MnCl$_2$ or PBS was added 1 hour before the NMR measurements. The final concentration of MnCl$_2$ in the NMR samples was 2 mM, as suggested by Pirkle et al. (58). The samples were allowed to equilibrate for half an hour before NMR measurements to allow interaction of manganese with water molecules outside the cells (59). The hematocrits of the samples at various stages of preparation were measured.

III.2  Experimental Measurements

III.2.1  Cetiedil Extinction Coefficient Measurements

The UV absorption spectra, in the region of 190 to 400 nm, of cetiedil solutions of known concentrations (from 10 to 150 µM of cetiedil in 5P7.4/NaCl buffer) were obtained on a double beam UV-Vis spectrophotometer (Varian DMS 90, CA), and showed a maximum absorption at 233 nm. The absorption values at 233 nm ($A_{233}$) were measured as a function of cetiedil concentration. A simple linear regression analysis was used to determine the extinction coefficient of cetiedil.

III.2.2  Critical Micelle Concentration Determination

Since cetiedil is an amphiphilic molecule, its solubility in water is limited (51). At high concentration, the molecules appear to form micelles in water, with monomers and micelles in equilibrium. The critical micelle concentration (cmc) of cetiedil was defined and determined according to the method of Phillips (60). A mass-action model of micelle formation was used. At the cmc,
the third derivative of an ideal colligative property of the amphiphile, \( A_{233} \) of cetiedil for this work, with respect to concentration ([C]) is zero (\( d^3A_{233}/d[C]^3 = 0 \)). The \( A_{233} \) of cetiedil solutions in the concentration range of 1 - 15 mM were measured using a narrow path length, 1.0 or 0.2 mm, optical cell. The absorbance values at different concentrations were fitted to polynomial equations of varying order: \( A_{233} = a[C] + b[C]^2 + c[C]^3 + ... + n[C]^m \), where \( a, b, c, \) etc., were parameters to be determined from experimental data, and \( m \) was the order of the polynomial equation. The third derivatives of these polynomial equations with respect to concentration were set to zero to solve for cmc values.

III2.3 pH Measurements

For the pH effect studies, various amounts of 30 mM cetiedil stock solution in PBS were added to PBS, or to blood serum, to give a concentration range of cetiedil of 4.3 \( \mu \)M to 20 mM. The pH was measured at room temperature, in an open system exposed to air by Beckman Digital pH meter (model 3500) with Ingold (Andover, MA) combination pH electrode (model 18513). After adding cetiedil to serum, the contents were constantly stirred. During this time, the dissolved carbon dioxide escaped from the acidified serum. The pH values stabilized usually 5 minutes after the addition of cetiedil.

III2.4 UV Difference Spectroscopic Measurements

The UV difference spectral measurements were made following the procedure of Welti et al. (50). The Varian DMS 90 spectrophotometer was used for all measurements. Regular absorption spectra were obtained in 1-cm light
path quartz cuvettes with the appropriate reference of either 5P7.4/NaCl buffer or erythrocyte ghost membrane (4 mg/mL) in 5P7.4/NaCl buffer. Difference spectral titrations were done in tandem cuvettes with buffer in a 0.45 - cm compartment and a solution of cetiedil in another equal light path compartment of both the reference and sample cuvettes. With this setup, first a baseline spectrum was recorded and stored. The baseline correction mode was activated to avoid baseline drifts in the subsequent measurements.

A titration was performed by adding various amounts of membrane ghost (4 mg/mL) in 5P7.4/NaCl buffer to the compartment containing cetiedil solution in the sample cuvette and to the compartment containing buffer in the reference cuvette. The solution was mixed by repeated pipetting with a pasteur pipet. Equal volumes of buffer were added to the compartments not containing membranes. The lipid concentration of the membrane ghosts (0.50 µmol of phospholipid per mg of proteins as calculated by Welti et al., (50)) in the sample mixture ranged from 6.7 to 113.2 µM. The concentration of cetiedil in all sample mixtures was 400 µM. After the addition of membrane ghosts, the samples were allowed to equilibrate for 5 min at room temperature before the spectrum was recorded. The difference spectra were recorded between 220 and 290 nm. No settling of the membrane ghosts was detected during the measurements. The positive amplitude of the difference spectra was measured to obtain A values. This was done by measuring from the baseline of the difference spectrum to the maximum of the spectrum (250 nm).

III.2.5 NMR Absorption Spectra Measurement

III.2.5.1 ¹³C NMR
13C NMR spectra were recorded at 90 MHz and 50 MHz using a Nicolet NIC 360 and Nicolet NIC 200 (Nicolet Magnetics Corporation, WI) spectrometers with 12 mm sample tubes. The "Bilevel" pulse sequence (one-pulse with two-level decoupling) was used to record the spectra (61). The pulse sequence is written as [D₃, P₂, A, D₂, D₆], where D₃ is a delay time that is allowed for relay switching times (usually 1 µsec), P₂ is an excitation pulse, A is the acquisition trigger, D₂ is the acquisition time. A delay time of D₆ was allowed before repeating the pulse sequence.

The "Bilevel" pulse sequence is used typically for heteronuclear broadband decoupling, where high decoupler power is needed during data acquisition, but a lower power level can be used between scans to maintain the nuclear Overhauser enhancement (nOe).

For spectra of cetiedil in different solvents at 26.5 mM, 1000 scans (about 3 hours) were collected. The time averaged free induction decays (FID) were Fourier transformed to give the spectra in the frequency domain.

For the spectrum of cetiedil in methanol, the solvent signal was used as the internal reference to obtain the chemical shifts of cetiedil carbons. As for cetiedil in D₂O and in deuterated buffer solutions, the chemical shifts were obtained by direct comparison to the methanol spectrum. For this, the same offset value of the pulse carrier frequency was used as in the case of the methanol spectrum (62).

For cetiedil in the presence of membranes, more scans were required in order to improve the signal-to-noise. Usually, 20 blocks of 1000 FID/block (about 60 hours) were collected. Typical parameter settings for 13C NMR experiments are given in Table 1.

The linewidths of the carbon resonances were measured by fitting the
data points to a Lorentzian line shape function and reported in units of hertz (Hz). No line broadening factor was used.

III.2.5.2 ¹H NMR

Proton NMR spectra were recorded at 200 MHz using a Nicolet NIC 200 spectrometer with 5 mm sample tubes. The PRESAT (one-pulse with decoupler presaturation) pulse sequence was used to record the spectra (61). According to this pulse sequence, the decoupler is turned on for D₃ seconds before pulsing, so that the solvent peak can be saturated. After a delay of D₄ seconds, the excitation pulse, P₂ is set followed by data acquisition, A and delay for acquisition, D₂. The pulse sequence is written as, [D₃, P₂, A, D₂, D₃]. Typical parameter settings for the ¹H NMR experiments are given in Table 1.

III.2.6  EPR Experiments

EPR samples were introduced into 50 L microhematocrit capillary tubes (nonheparinized, Type II glass, American Scientific, ILL.) following the procedures used in this laboratory (35). An EPR spectrometer (Varian model E109) interfaced with a time averager (Nicolet model 535) and a variable temperature set up (Varian), was used to obtain the EPR spectra. The temperature of each EPR measurement was controlled and monitored with copper - constantan thermocouple placed inside the sample tubes to within 0.1 °C. The EPR spectrometer settings used for measuring the spectra are given in Table 2.
### Table 1. Spectral Parameters for NMR Experiments

<table>
<thead>
<tr>
<th>Parameter</th>
<th>$^{13}$C NMR</th>
<th>$^{1}$H NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer Frequency (MHz)</td>
<td>90.80&lt;sup&gt;a&lt;/sup&gt;</td>
<td>200.07&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>50.02&lt;sup&gt;b&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>Spectral Width (Hz)</td>
<td>20,000</td>
<td>2000</td>
</tr>
<tr>
<td>Excitation Pulse, $P_2$ (μsec)</td>
<td>13.00</td>
<td>5.50</td>
</tr>
<tr>
<td>Memory Size</td>
<td>16 K</td>
<td>8 K</td>
</tr>
<tr>
<td>Data Acquisition Time, A (sec)</td>
<td>0.410</td>
<td>2.05</td>
</tr>
<tr>
<td>Delay Time, $D_2/D_3$ (sec)</td>
<td>0.0001</td>
<td>3.00</td>
</tr>
<tr>
<td>Pulse Delay $D_5$ (sec)</td>
<td>10.00</td>
<td>0.10</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>1000&lt;sup&gt;c&lt;/sup&gt;</td>
<td>600&lt;sup&gt;d&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>20 x 1000&lt;sup&gt;e&lt;/sup&gt;</td>
<td>20 x 600&lt;sup&gt;f&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup> Nicolet NIC 360 spectrometer.

<sup>b</sup> For spectra taken with Nicolet NIC 200 spectrometer.

<sup>c</sup> For cetiedil in $D_2O$, methanol, buffer, and glycerol solvents.

<sup>d</sup> For cetiedil in buffer.

<sup>e</sup> For cetiedil in membrane.

<sup>f</sup> For cetiedil in membrane.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mal-6 Labeled</th>
<th>5-Doxyl Stearate Labeled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave Power Attenuation</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>(decibals)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation Frequency (KHz)</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Modulation Amplitude (Gauss)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Time Constant (sec)</td>
<td>0.128</td>
<td>0.128</td>
</tr>
<tr>
<td>Scan Time (min)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of Scans</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Field Set (Gauss)</td>
<td>3181</td>
<td>3205</td>
</tr>
<tr>
<td>Microwave Frequency (GHz)</td>
<td>8.65</td>
<td>8.65</td>
</tr>
<tr>
<td>Scan Range (Gauss)</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>
III.2.7 Water Exchange Time Measurements

III.2.7.1 Cell Volume Measurements

III.2.7.1.1 Determination of Hemoglobin Concentration

The procedure devised by Tentori and Salvati (63) was followed for determining the total hemoglobin concentration. According to this procedure, 20 µL of the blood sample (NMR sample after NMR measurements) was treated with 5 mL of the cyanide reagent which contained 607 µM potassium ferricyanide ($K_3Fe(CN)_6$), 768 µM potassium cyanide (KCN), 1 mM potassium dihydrogen phosphate ($KH_2PO_4$) and a non-ionic detergent (1 mL/L, Triton X-100). Potassium ferricyanide oxidized the hemoglobin to methemoglobin with cyanide as ligand to give $Hb^+ - CN^-$. The detergent enhanced hemolysis and prevented turbidity introduced by the membrane proteins. The absorbance of the resulting solution was read at 540 nm after letting the mixture equilibrate for half an hour. The hemoglobin concentration was calculated from the equation,

$$\frac{A_{540} \times F \times M}{E_{540} \times L} \times 100$$

where, $F$ = dilution factor; $M$ = molecular weight of hemoglobin chain (16 KDa); $L$ = light path in cm; $A_{540}$ = absorbance of $Hb^+ - CN^-$ solution at 540 nm; $E_{540}$ = molar extinction coefficient of the cyanomet hemoglobin at 540 nm (11,000 M$^{-1}$ cm$^{-1}$).

III.2.7.1.2 Cell Volume

The total number of cells was obtained by dividing hemoglobin
concentration, obtained by the above method, by the mean corpuscular hemoglobin concentration (MCHC, $29 \pm 2$ pg/cell for normal cells (59), and $32 \pm 2$ pg/cell for sickle cells (2)). The average cell volume (in mL) was determined by dividing the hematocrit value by the total number of cells. The cell volume measurements were done after each NMR measurement.

### III.2.7.2 Spin - Spin Relaxation Time

Water proton spin-spin relaxation times, $T_2$, of the blood samples were measured at 37 °C in a Nicolet NIC 200 spectrometer (Nicolet Magnetics Corporation, WI) using the Carr-Purcell-Meiboom-Gill pulse sequence (90-i-180, where i is the delay between the 90 and 180 degree pulses) (64, 65). Sample points were taken on the top of each echo. This was achieved by using a continuously variable delay trigger after the 180 degree pulse of the CPMG sequence. 16 scans were signal averaged for each sample. Independent $T_2$ measurements were made on packed red blood cells (control) by fitting the relaxation data to a single exponential function which relates the decay of magnetization to $T_2$. For Mn - doped samples, the decay of the echo amplitudes was resolvable into two exponential components; a fast component and a slow component. The time constant characteristic of the slower component, which is related to the water diffusion exchange time, $T_{ex}$, was determined from the decomposition of this decay by a non-linear least squares computer program (section III.3.3). The experimental parameters used for measuring the $T_2$ values are given in Table 3.

### III.2.7.3 Measurement of Change in the Intracellular Water Content

In order to determine the effect of ceticedil on intracellular water
### Table 3. Experimental Parameters for $^1$H of Water Relaxation Time Measurements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer Frequency (MHz)</td>
<td>200.07</td>
</tr>
<tr>
<td>Spectral Width (Hz)</td>
<td>1000</td>
</tr>
<tr>
<td>Scans</td>
<td>16</td>
</tr>
<tr>
<td>90° Pulse (usec)</td>
<td>7.5</td>
</tr>
<tr>
<td>180° (usec)</td>
<td>15.00</td>
</tr>
<tr>
<td>Acquisition (msec)</td>
<td>512.00</td>
</tr>
<tr>
<td>Recycle Time (msec)</td>
<td>0.100&lt;sup&gt;a&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td>0.200&lt;sup&gt;b&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>a</sup> For cells with Mn<sup>++</sup>.

<sup>b</sup> For cells without Mn<sup>++</sup>.
content, the changes in the cell water content were measured. This was done by two methods: the NMR method and the hematocrit measurement method.

In the NMR method, as discussed in the previous section, the spin-spin relaxation data of the packed cells were fitted to a single exponential function. The intercept (the echo amplitude) of the CPMG decay curve at \( t = 0 \), which is directly proportional to the amount of cell water, was measured. From the difference in the echo amplitudes of the samples before and after treatment with cetiedil, the change in the cell water content was determined.

Although the hematocrit measurement is not a direct method of determining cell water content, it could still be used to determine changes in water content. Thus for the present study, the hematocrit values of RBC before and after treatment with cetiedil were measured. From the difference in the hematocrit values of samples before and after treatment with cetiedil, the change in the cell water content was determined.

III.3 Data Analysis

III.3.1 UV Difference Spectral Data Analysis

In order to determine the concentration of cetiedil bound to the membranous lipids accurately, the change in the absorbance of cetiedil in the membranous lipid phase, \( \delta A \), was measured (50). \( \delta A \) is proportional to the amount of lipid-associated cetiedil. At high membrane lipid concentrations, \( \delta A \) approaches \( \delta A_{\text{max}} \), the value corresponding to 100 % cetiedil bound. Then \( \delta A / \delta A_{\text{max}} \), at a given membrane lipid concentration, is the fraction of total cetiedil associated with membrane lipid. From the knowledge of the fraction of cetiedil in the membrane lipid phase and in the buffer phase, the molar
partition coefficient of cetiedil between buffer (water) and membrane lipid was defined as

\[
K_p = \frac{\text{mol of cetiedil in lipid}}{\text{mol of lipid}} \frac{\text{mol of cetiedil in water}}{\text{mol of water}}
\]

or,

\[
K_p = \frac{\text{fraction of cetiedil in lipid}}{\text{[lipid]}} \frac{\text{fraction of cetiedil in water}}{\text{[water]}}
\]

where [lipid] and [water] are expressed as molar concentrations. Since the fraction of cetiedil in lipid and the fraction of cetiedil in water added up to 1,

\[
K_p = \frac{1}{\text{[lipid]} (\delta A/\delta A_{\text{max}})}
\]

The above equation was rearranged to give

\[
\frac{1}{\delta A} = \frac{1}{\text{[water]}} \frac{1}{\text{[lipid]}} + \frac{1}{\delta A_{\text{max}}}
\]

The above equation was used to obtain \(\delta A_{\text{max}}\) and \(K_p\) from the plot of \(1/\delta A\) vs \(1/[\text{lipid}]\).
III.3.2 EPR Data Analysis

III.3.2.1 S-Doxyl Stearate Labeled Samples

The hyperfine separation (HFS) of the high field and low field EPR signals of labeled membrane samples were measured as a function of cetiedil concentration (35).

III.3.2.2 Mal-6 Labeled Samples

The W/S ratios (39) of membrane samples without cetiedil, \((W/S)_{0}\), and of membranes with a certain amount of cetiedil present, \((W/S)_{\text{cet}}\), were measured. \((W/S)_{\text{cet}}\) the difference between \((W/S)_{0}\) and \((W/S)_{\text{cet}}\) was calculated and used to obtain quantitative information on the interaction between cetiedil (C) and membranes (M).

A general cooperative binding model was first assumed for membranes with \(n\) binding sites, \(M + nC \rightarrow MC_n\). For this model the equilibrium dissociation constant, \(K_d\), was equal to \([C]^n[M]/[MC_n]\), where [M] was the final membrane concentration, [C] was the concentration of free cetiedil, in equilibrium with the bound cetiedil, and \([MC_n]\) was the concentration of the membrane-cetiedil complex. If \(f_b\) was the membrane fraction that interacted with cetiedil, then, \(f_b = [MC_n]/([MC_n] + [M])\). Combining the \(K_d\) and \(f_b\) expressions given above, the following expression was obtained:

\[
f_b = \left(1 + \frac{K_d}{[C]^n}\right)^{-1}
\]  

Assuming that the changes in the W/S ratio observed upon addition of cetiedil to the membrane were the direct results of cetiedil interacting with the membrane to reduce the spin label mobility, the EPR data could be related to \(f_b\) to obtain values for the \(K_d\). Assuming \((W/S)_b\) as the W/S value for
membrane bound with cetiedil, then \((W/S)_{\text{cet}} = f_b(W/S)_b + (1 - f_b)(W/S)_o\), or

\[
\Delta (W/S)_{\text{cet}} = f_b \Delta (W/S)_o
\]

where \(\Delta (W/S)_o = (W/S)_o - (W/S)_b\). Substituting equation (5) into equation (6), the following equation was obtained:

\[
\Delta (W/S)_{\text{cet}} = \Delta (W/S)_o (1 + K_d/[C]^n)^{-1}
\]

When \(n = 1\), this equation became the equation for the two-state binding model for membranes with multiple independent binding sites, \(M + C \rightarrow MC\). \(\Delta(W/S)_{\text{cet}}\) and \([C]\) values were experimental data. \(K_d, \Delta(W/S)_o\) and \(n\) could be obtained from equation (7) using nonlinear regression methods. The \(n\) values, which indicate the cooperativity of binding, were also obtained by Hill plots. The half saturation concentration, \(C_{1/2}\), was the cetiedil concentration that gave a \(\Delta(W/S)_{\text{cet}}\) value that was half of the \(\Delta(W/S)_o\) value, and was obtained from the nonlinear regression analysis.

### III.3.3 Water Exchange Time Data Analysis

The measured relaxation time of water protons of RBC results from the water exchange across the cell membranes which is superimposed on the ordinary spin-spin relaxation of water in the cell (66). In order to obtain the exchange time of water across the cell membranes, the relaxation data of the Mn-doped samples were analyzed using the theory of two-site exchange (58). Assuming no significant chemical shift difference between the water molecules inside and outside the cell, Woessner (67) has derived the following normalized
expression for the effect of two-site exchange on the CPMG decay:

\[ M(t) = \left[ P_a' \exp \left(-t/T_{2a}'\right) + P_b' \exp \left(-t/T_{2b}'\right) + B \right] \]  \hspace{1cm} (8)

where, \( M(t) \) represents the magnetization at time \( t \), \( B \) is a baseline correction factor, \( T_{2a}' \) and \( T_{2b}' \) are the apparent relaxation times of water molecules inside and outside the cell, respectively and \( P_a' \) and \( P_b' \) are the apparent fractions of the echo amplitudes from the intra- and extra- cellular water molecules, respectively.

The relaxation data of Mn-doped sample were first fit by Equation (8) by non-linear least squares method to obtain \( P_a', T_{2a}', \) and \( T_{2b}' \)

where,

\[
\frac{1}{T_{2a}'} = C_1 - C_2 \hspace{1cm} (9)
\]

\[
\frac{1}{T_{2b}'} = C_1 + C_2 \hspace{1cm} (10)
\]

\[
P_b' = \frac{1}{2} - \frac{1}{4} \left( P_b - P_a \right) (1/T_{2a} - 1/T_{2b}) + 1/T_{ex} + 1/t_b \right] / C_2 \hspace{1cm} (11)
\]

\[
P_a' = 1 - P_b' \hspace{1cm} (12)
\]

where,

\[
C_1 = \frac{1}{2} \left[ 1/T_2 + 1/T_{2b} + 1/T_{ex} + 1/t_b \right] \hspace{1cm} (13)
\]

\[
C_2 = \frac{1}{2} \left[ (1/T_{2b} - 1/T_2 + 1/t_b - 1/T_{ex})^2 + 4/T_{ex} t_b \right]^{1/2} \hspace{1cm} (14)
\]

\[
P_a = 1 - P_b \hspace{1cm} (15)
\]

\[
P_a/T_{ex} = P_b/t_b \hspace{1cm} (16)
\]

In the above equations, \( T_2 \) is the spin - spin relaxation time of water inside
the cell (packed cells), $T_{2b}$ is the relaxation time of water outside the cell, $t_b$ is the residence time of water outside the cell, and $P_a$ and $P_b$ are the fractions of the echo amplitudes of water molecules inside and outside the cell respectively. The values of $P_a'$, $T_{2a}'$ and $T_{2b}'$ were then used in Equations 9-16 and the values of $T_{2b}$, $T_{ex}$, $t_b$, $P_a$ and $P_b$ were calculated. The exchange time is related to the diffusional water permeability constant, $P_w$, by the equation (44),

$$P_w = (V/A)/T_{ex}$$  \hspace{1cm} (17)$$

where, $V$ is the cell volume and $A$ is the surface area of RBC. For the calculation of the permeability constants, the cell surface area was taken as $140 \times 10^{-8} \text{ cm}^2$ (68). $P_w$ is expressed in cm/sec. Equation 17 was then used to obtain the diffusional permeability constant.
IV. RESULTS AND DISCUSSION

IV.1 Molecular Properties of Cetiedil

IV.1.1 pH Effects

Figure 2 shows the pH of the drug molecule, cetiedil citrate, in PBS and in blood serum as a function of cetiedil concentration. In PBS, addition of 500 µM cetiedil causes the pH of the buffer to drop from 8.0 to 7.7. At 20 mM cetiedil, the pH is about 6.3, and at 30 mM, the pH is 4.0.

This sharp change in pH upon addition of cetiedil to buffer was probably due to the citrate moiety that was present with cetiedil as a counterion. The pK$_2$ of citric acid is 4.76 and pK$_3$ is 6.4 at 25 °C (69). The first ionizable proton (pK$_1$ = 3.1) of the three carboxylate groups in citrate is neutralized by the positive charge on the tertiary ammonium group of azepine ring, which has a pK$_a$ of about 10. Various concentrations of citric acid solutions in PBS were also prepared and their pH values were compared with those of cetiedil solutions. The pH profiles of cetiedil citrate and citric acid in PBS were similar.

The pH effect of the drug molecule was also tested on blood serum in a similar manner. Although the pH profile of cetiedil in serum in Figure 2 looks similar to that in PBS, the curve is slightly right shifted, indicating that the buffering capacity of blood serum is somewhat better than that of PBS. The pH of the serum remains constant upon addition of cetiedil up to about 0.5 mM, and it drops to about 6.5 at 20 mM cetiedil. Thus the pH titration experiments clearly showed that the drug molecule became acidic at concentrations greater than 500µM.
Figure 2. pH profile of cetiedil in blood serum (plus) and in PBS (triangle). pH measurements were made on a Beckman Model 3560 Digital pH meter using an Ingold Micro pH Electrode at room temperature. The pH of the blood serum was 7.78. The lines shown through the data are spline fits and have no theoretical significance.
IV.1.2 Extinction Coefficient of Cetiedil

The maximum UV absorption of cetiedil in 5P7.4/NaCl buffer is at 233 nm (inset of Figure 3). The molar extinction coefficient at 233 nm ($E_{233}$) determined from the slope of a linear plot of $A_{233}$ versus cetiedil concentration over the range of 10 to 150 M was 2796 M$^{-1}$ cm$^{-1}$ (Figure 3). The chromophores in cetiedil appear to be the thiophene (sulfur-containing 5 membered ring) and the azepine (nitrogen-containing 7 membered ring) groups, both of which absorb in the UV region. For thiophene, the maximum absorption is at 231 nm, and the $E_{231}$ is 7,100 M$^{-1}$ cm$^{-1}$ (70), and for azepine, the maximum absorption is at 226 - 229 nm, and the $E_{227}$ is 13,780 M$^{-1}$ cm$^{-1}$ (71). The low value of the extinction coefficient of cetiedil compared to that of its components suggested that the absorption is less efficient in the case of cetiedil (72). The nitrogen atom of azepine ring in cetiedil is protonated in buffer and so the absorption due to that moiety is affected. Therefore, the spectrum was basically due to the absorption by the substituted thiophene moiety. The observed molar extinction coefficient, 2796 M$^{-1}$ cm$^{-1}$ for cetiedil, however, is much less than 7100. The absorption characteristics of substituted heteroaromatic compounds depend on the substituents present in the ring and also on the solvent (70). The presence of electron withdrawing substituents in thiophene ring such as nitro group (-NO$_2$) causes a red shift in the absorption maximum to 268 - 272 and the extinction coefficient decreases to 6,300 M$^{-1}$ cm$^{-1}$ (70). Thus in cetiedil the decrease in extinction coefficient may be due to the substituent on thiophene ring, the substituted ester group (cyclohexyl and azepinyl).
Figure 3. Plot of $A_{233}$ versus concentration of cetiedil in 5 mM phosphate buffer with 150 mM NaCl. Inset shows the UV spectrum of cetiedil with maximum absorption at 233 nm. The molar extinction coefficient was determined from the slope of the line.
IV.1.3 Cetiedil Micelles

Figure 4 shows that the $A_{288}$ (1 mm light path) values of cetiedil in SP7.4/NaCl buffer level off at higher cetiedil concentrations, above 8 mM. The instrument performance at high absorbance was checked to ensure linear response. Straight lines were obtained for absorbance versus concentration plots for benzoic acid at 230 nm (Figure 5A), and for hemoglobin solutions at 280 nm (Figure 5B). Light scattering at 233 nm was also checked by monitoring the absorbance of membrane solutions. A linear response was also obtained at high absorbance (2 - 3) (Figure 5C). The levelling off phenomenon in cetiedil solutions at high concentration is then attributed to micelle formation. The relationship between the absorbance and concentration was fit to polynomial equations to determine the critical micelle concentration as discussed in section III.2.2. Polynomial equations with orders equal to 4, 5, 6, 7, and 8 all gave reasonably good fits to the experimental data. The average value of the cmc from these fitted polynomial equations was $8.8 \pm 0.3$ mM.

IV.1.4 Solvent Effects on the Conformation of Cetiedil Molecules in Solution

In all the solvent systems studied, the $^{13}$C NMR spectra of cetiedil consisted of three distinct regions: the downfield carbonyl region (172 - 180 ppm), the middle region of the aromatic thiophenyl carbons (120 - 139 ppm), and the upfield region of the azepinyl and cyclohexyl carbons and also of the carbons from the rest of the molecule including the citrate moiety (20 - 75 ppm). For cetiedil in D$_2$O solvent (Figure 6), based on published spectra of the compounds that are close structural analogs
Figure 4. Critical micelle concentration of cetiedil. $A_{233}$ versus cetiedil concentration in 5 mM phosphate buffer with 150 mM NaCl. Optical cells with a 1 mm light path were used to obtain the $A_{233}$ values.
Figure 5. Plot of absorbance versus concentration to check the linearity of the instrument. A: $A_{230}$ versus benzoic acid concentration. B: $A_{280}$ versus hemoglobin concentration. C: $A_{233}$ versus concentration of membrane lipids. The concentration is expressed in terms of phospholipids ($4.8 \times 10^8$ phospholipids per membrane ghost; 0.5 μmol lipid per mg of membrane protein).
Figure 6. 90 MHz $^{13}$C NMR spectrum of cetiedil citrate in D$_2$O at 23 °C. Concentration 26.5 mM; number of scans 1000 (about 3 hours); spectral width 20,000 Hz. The numbered peaks correspond to the cetiedil carbons (see section I.3) and the peaks with asterisks correspond to the citrate moiety.
of the different groups present in cetiedil, the peak assignments were determined. Accordingly, the carbonyl carbons of the citrate moiety were assigned to the peak at 175.62 ppm using the published spectrum of sodium citrate (73) and the carbonyl carbon of the cetiedil moiety (C-7) was assigned to the peak at 178.52 ppm using the spectrum of ethyl acetate (74). The thiophenyl carbons (C-2 to C-5) were assigned using the published spectrum of 3-substituted thiophene (75). Thus the peaks at 127.57 ppm, 137.12 ppm, 123.33 ppm, and 126.44 ppm were assigned to the thiophenyl carbons, C-2, C-3, C-4, and C-5 respectively. The resonances of cyclohexyl carbons (C-18 to C-23) were assigned using the published spectrum of methyl cyclohexane (76). Thus, C-18 of cetiedil was assigned to the peak at 29.81 ppm; C-19 and C-23 were assigned to the peak at 31.24 ppm and carbons 20 and 22 were assigned to the peak at 25.67 ppm. The chemical shifts of cyclohexyl carbons of cetiedil were very similar to the chemical shifts of the chair form of methyl cyclohexane (77). So, it was concluded that the cyclohexyl group of cetiedil is in the chair conformation. Using N-methyl piperidine as the model compound (78), C-12 and C-17 were assigned to the peak at 55.18 ppm, C-13 and C-16 were assigned to the peak at 25.67 ppm, and C-14 and C-15 were assigned to the peak at 23.10 ppm. The C-6, C-9 and C-10 of cetiedil were assigned to the peaks at 40.15 ppm, 59.43 ppm, and 53.12 ppm respectively, based on the published spectrum of ethyl acetate. The chemical shift assignments of the cetiedil spectra in methanol, buffer and glycerol were made by comparison with the spectrum of cetiedil in D$_2$O.

The chemical shift assignments of all the cetiedil carbons in methanol, and buffer are also shown in Table 4. The chemical shift values have an estimated precision of ±0.014 ppm for individual runs. There is a general
### Table 4. Carbon Chemical Shifts (δ) of Cetiedil in Different Solvents

<table>
<thead>
<tr>
<th>Model Compound Reference</th>
<th>Carbon</th>
<th>D$_2$O</th>
<th>Methanol</th>
<th>5P7.4/NaCl</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 2</td>
<td></td>
<td>127.57</td>
<td>127.87</td>
<td>128.22</td>
</tr>
<tr>
<td>71 3</td>
<td></td>
<td>137.12</td>
<td>138.29</td>
<td>137.98</td>
</tr>
<tr>
<td>71 4</td>
<td></td>
<td>123.33</td>
<td>123.40</td>
<td>124.23</td>
</tr>
<tr>
<td>71 5</td>
<td></td>
<td>126.44</td>
<td>126.42</td>
<td>127.25</td>
</tr>
<tr>
<td>70 6</td>
<td></td>
<td>40.15</td>
<td>41.56</td>
<td>40.96</td>
</tr>
<tr>
<td>70 7</td>
<td></td>
<td>178.52</td>
<td>178.94</td>
<td>179.53</td>
</tr>
<tr>
<td>70 9</td>
<td></td>
<td>59.43</td>
<td>59.86</td>
<td>60.28</td>
</tr>
<tr>
<td>70 10</td>
<td></td>
<td>53.12</td>
<td>54.18</td>
<td>53.93</td>
</tr>
<tr>
<td>74 12,17</td>
<td></td>
<td>55.18</td>
<td>55.69</td>
<td>56.07</td>
</tr>
<tr>
<td>72,74 13,16,20,22</td>
<td></td>
<td>25.67</td>
<td>26.91</td>
<td>26.49</td>
</tr>
<tr>
<td>74 14,15</td>
<td></td>
<td>23.10</td>
<td>24.03</td>
<td>23.95</td>
</tr>
<tr>
<td>73 18</td>
<td></td>
<td>29.81</td>
<td>30.85</td>
<td>30.62</td>
</tr>
<tr>
<td>73 19,23</td>
<td></td>
<td>31.24</td>
<td>32.36</td>
<td>32.04</td>
</tr>
</tbody>
</table>

*Cetiedil concentration in all solvents except membrane was 26.5 mM. In the membrane system, the cetiedil concentration was 19.5 mM (in 5P7.4/NaCl with a final pH of 6.3). All spectra were taken at room temperature (23 ± 1 °C).*
trend in the chemical shifts of cetiedil carbons. The chemical shift of a
particular carbon is most upfield in D$_2$O, and is downfield shifted in methanol
solvent, as the polarity of the solvent decreases from that of D$_2$O.

Comparing the $^{13}$C NMR chemical shifts of cetiedil in different solvents
showed that cetiedil probably undergoes overall conformational change as the
polarity of the solvent changed. For example, the chemical shift of the
carbonyl carbon (C-7) of cetiedil is more upfield in D$_2$O solvent than in the
presence of methanol. The hydrogen bonding capability in water is more than
that in methanol. For carbonyl carbons, in the absence of other effects,
hydrogen bond formation usually leads to downfield shifts (79, 80). In the
case of cetiedil however, the hydrogen bond formation seems to lead to upfield
shifts. Therefore, there may be other effects such as hydrophobic interactions
that mask the effect of hydrogen bonding. Hydrogen bond formation is usually
accompanied by a change in the dipole moment of the interacting species.
According to the charge-transfer theory, the proton-donor group tends to
acquire excess electronic density directly from the basic electron-donor
complement (81). In the case of cetiedil, the proton-donor H of water molecule
gains electron density from the electron-donor group, carbonyl, of cetiedil.
Since cetiedil is an ester, the ester oxygen can also hydrogen bond with
water. In the case of amide bonds (peptide linkage), the polarizability of the
bond is such that the effects from these two hydrogen bonds (carbonyl oxygen
and the amide nitrogen) lead to an upfield shift of the carbonyl carbon (82,
83). A similar effect is thus suggested for the observed upfield shift of
carbonyl carbon resonance. At the concentrations of cetiedil used in the
present $^{13}$C NMR studies (26.5 mM), cetiedil would exist as micelles in D$_2$O
solvent (Section IV.1.3). Since methanol is a less polar solvent than D$_2$O, the
molecular properties of cetiedil may be different which may be responsible for
the observed changes in the $^{13}$C NMR chemical shifts.

The $^1$H NMR spectra of cetiedil at different concentrations are shown in
Figure 7. Two distinct regions could be observed in all the cetiedil spectra;
the aromatic region that consists of the thiophenyl protons is about 2.5 ppm
downfield from the solvent (HOD) peak and the aliphatic region is upfield from
the solvent peak. Proton chemical shifts were referenced with respect to the
water signal, which was 4.75 ppm downfield from the proton resonance of
tetramethyl silane (TMS) at the ambient temperature of the probe. Chemical
shifts downfield from water were assigned positive values and the chemical
shifts upfield from water were assigned negative values. As in the case of the
carbon spectra, the chemical shifts were assigned by using the published
spectra of the analogous compounds. The spectrum of 3-methylthiophene was
used to assign the peaks from the thiophenyl protons in the aromatic region
(84). Thus, the peaks in the region 2.38 - 2.70 ppm were assigned to the
thiophenyl protons of cetiedil, H-2, H-4, and H-5. For assigning the azepinyl
protons, the spectrum of chloroethyl derivative of azepine hydrochloride was
used (84). Methylcyclohexane spectrum (84) was used to assign the chemical
shifts of the cyclohexyl protons (H-13 to H-16) of cetiedil to the peak at -3.10
ppm. By comparing the spectrum of sodium citrate, the methylene protons of
the citrate moiety were assigned. The broad envelope around -1.5 ppm was
assigned to the azepinyl protons H-12 (2 protons) and H-17 (2 protons). H-10
(2 protons ) were assigned to the peak at -0.35 ppm.
Figure 7. 200 MHz $^1$H NMR spectra of the aliphatic region of cetiedil citrate at different concentrations: A) 5 mM, B) 6 mM, C) 6.5 mM, D) 7 mM. For each spectrum, 600 FID's were collected and then Fourier transformed.
By spectral integration of the aliphatic region, 28 of the 33 aliphatic protons were accounted for (Table 5). The proton attached to nitrogen was probably broadened due to the quadrupolar coupling by nitrogen (85). The integration of the peaks close to the water signal was difficult because of the relatively large intensity of the water signal. The chemical shifts of the protons and their assignments are shown in Table 5.

Comparison of the proton NMR spectra of cetiedil at different concentrations showed that as the concentration was increased to about 6.5 mM, a new peak was observed at -1.60 ppm. Spectral integration of the 5 mM cetiedil spectrum showed 4 protons (H-12 and H-17) under the -1.5 ppm peak. For the 6.5 mM or higher concentration samples, spectral integration showed 2 protons each under the peaks at -1.5 ppm (H-12 or H-17) and -1.6 ppm (H-17 or H-12). Thus, at higher concentrations of the drug, the molecule seems to be in equilibrium with two forms. These two forms may be the cetiedil aggregates and the monomers. The UV data however, showed that cetiedil formed micelles only above 8 mM. Thus the peak at -1.6 ppm may be suggesting the involvement of the protons H-12 and/or H-17 in the formation of cetiedil aggregates. Further investigation of this property of cetiedil molecules might give more useful information.

IV.2 Binding Properties of Cetiedil to Membrane

IV.2.1 Membrane Effects on Cetiedil Conformation

The $^{13}$C NMR spectra of membrane, cetiedil in membrane and that of the difference spectrum after subtracting the contribution from the membranes are shown in Figure 8. The difference in chemical shifts of cetiedil in buffer and in the presence of membranes are shown in Table 6. In general, the
Figure 8. 50 MHz spectra of cetiedil citrate in the presence of membranes at 23 °C. A: difference spectrum of cetiedil after subtracting from spectrum B (membrane + cetiedil), spectrum C, the contribution due to the membrane components.
Table 5.  **Proton Chemical Shifts (δ ppm) of Cetiedil**

<table>
<thead>
<tr>
<th>Proton</th>
<th>δ(ppm)</th>
<th>Number of Protons</th>
<th>Expected</th>
<th>Observed*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4,5</td>
<td>2.38 - 2.70</td>
<td>3</td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.00</td>
<td>1</td>
<td>1.0a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.0b</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-1.30</td>
<td>2</td>
<td>1.0b</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-0.35</td>
<td>2</td>
<td>2.0a</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>-----</td>
<td>1</td>
<td>2.0b</td>
<td></td>
</tr>
<tr>
<td>12,17</td>
<td>-1.50</td>
<td>4</td>
<td>4.0a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.0b</td>
<td></td>
</tr>
<tr>
<td>12,17</td>
<td>-1.60</td>
<td>(2)</td>
<td>0.0a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.3b</td>
<td></td>
</tr>
<tr>
<td>13-16 &amp;</td>
<td>-3.10</td>
<td>11</td>
<td>10.0a</td>
<td></td>
</tr>
<tr>
<td>(19-23)</td>
<td></td>
<td></td>
<td>11.3b</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>-2.80</td>
<td>1</td>
<td>---a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.8b</td>
<td></td>
</tr>
<tr>
<td>(19-23)</td>
<td>-3.4 to -4.2</td>
<td>7</td>
<td>5.5a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.0b</td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td>-2.10</td>
<td>4</td>
<td>4.5a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.3b</td>
<td></td>
</tr>
</tbody>
</table>

* From the spectral integration of the aliphatic region
  a  For 5.0 mM cetiedil solution in 5 mM phosphate buffer with 150 mM NaCl with a final pH of 6.3.
  b  For 7.0 mM cetiedil solution in 5 mM phosphate buffer with 150 mM NaCl with a final pH of 6.3.
  c  The number in parenthesis means that the peak was either not integrable or not integrated. All spectra were taken at room temperature (22 ± 1 °C).
resonances of cetiedil in buffer and in membranes are shifted downfield compared to methanol and D$_2$O solvents. For the samples of cetiedil in buffer and in membranes, the ionic strength of the medium is much higher than that of water. Under high ionic strength conditions, the carbonyl carbon chemical shifts of esters have been shown to be shifted by up to ±2.0 ppm (83). Compared to cetiedil in water (D$_2$O), the chemical shift of the carbonyl carbon (C-7) of cetiedil in buffer is shifted downfield by about 1.0 ppm (Table 4) and the chemical shift of cetiedil in membranes is shifted downfield by about 2.2 ppm (Table 6). Thus, the chemical shift changes of carbonyl carbon of cetiedil in buffer and in membranes are attributed to ionic strength effects. Overall, the conformation of the cetiedil molecules in the presence of membranes seems to be affected.

Figure 9 shows the linewidth correlation diagram of cetiedil carbons in solvents of different polarities and in membranes. For a particular carbon of cetiedil, the linewidth is broader in the presence of membrane compared to the other systems. The linewidths in general increase in the order: methanol < D$_2$O < buffer < membrane. For the thiophenyl carbons 2 and 4, the linewidths increase from about 2 - 3 Hz in methanol to about 7.5 Hz in membrane. For C-5 the increase is about 4 Hz, in going from methanol to membrane. For the cyclohexyl carbons (C-18 to C-23), the linewidth is in the range 14 - 18 Hz in membrane, compared to about 2 Hz in methanol. Similarly, for the azepinyl carbons, the linewidths are broader in membranes compared to methanol. In general, the linewidths of cetiedil carbons are broadened in the presence of membranes. In order to test whether the line broadening in the presence of membranes is due to viscosity effects, a sample of cetiedil in buffer with glycerol was prepared, with viscosity slightly
Figure 9. Linewidth correlation diagram of cetiedil carbons. Linewidths (Hz) of cetiedil carbons are plotted versus different solvent systems and membranes. Y-axis: 1 refers to membrane, 2 refers to glycerol, 3 refers to D$_2$O and 4 refers to methanol. Each plot corresponds to the assigned peaks in Table 5.
<table>
<thead>
<tr>
<th>Carbon</th>
<th>Difference ($\delta - \delta_{D_2O}$) ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buffer</td>
</tr>
<tr>
<td>2</td>
<td>0.65</td>
</tr>
<tr>
<td>3</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>0.90</td>
</tr>
<tr>
<td>5</td>
<td>0.81</td>
</tr>
<tr>
<td>6</td>
<td>0.81</td>
</tr>
<tr>
<td>7</td>
<td>1.01</td>
</tr>
<tr>
<td>9</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>0.81</td>
</tr>
<tr>
<td>12,17</td>
<td>0.89</td>
</tr>
<tr>
<td>13,16,20,22</td>
<td>0.82</td>
</tr>
<tr>
<td>14,15</td>
<td>0.85</td>
</tr>
<tr>
<td>18</td>
<td>0.81</td>
</tr>
<tr>
<td>19,23</td>
<td>0.80</td>
</tr>
</tbody>
</table>
greater than that of the membrane-cetiedil sample. If the line broadening observed in the case of membrane is simply due to viscosity effects, then the linewidths in the glycerol sample should be similar or larger than those in membrane. Since the linewidths in the glycerol sample is narrower than in the membrane samples, the linebroadening is probably due to the interaction of cetiedil with the membrane components and not because of the viscosity effects.

Analysing the linewidths of cetiedil carbons in the presence of membrane shows that the carbonyl carbon of the molecule is relatively less affected than the rest of the molecule (3.2 Hz increase) and the cyclohexyl and the thiophenyl carbons are affected more (5.5 - 13.5 Hz increase). This may be indicative of the involvement of the nonpolar regions of the molecule in the interaction with the membrane components. In the proton spectra, the effects were even more drastic. At very low membrane concentrations (cet/membrane molar ratio 5/1), the line broadening in the cetiedil proton resonances was very significant.

The presence of a single broad resonance for the peak means that the bound and the free molecules are probably in a fast exchange process (exchange rate greater than $10^5$ to $10^{12}$ sec$^{-1}$) (43). A similar effect was also observed when the proton NMR spectra of cetiedil in buffer and cetiedil in the presence of membranes were compared. Thus, both carbon and proton spectra of cetiedil provided information about the parts of cetiedil molecule that were affected upon interaction with membranes.

IV.2.2 Cetiedil - Membrane Interaction

The free cetiedil concentration in the presence of membrane ghosts was determined with UV absorbance method on supernatant after centrifugation, as
discussed in section III.1.5. Figure 10 shows the concentration relationship between free cetiedil and total cetiedil added in the presence of 1.33 mg/mL membranes. The slope of the fitted line is 0.88. About 88% of cetiedil remains in solution as free cetiedil. For example, at 5 mM cetiedil concentration, about 0.6 micromoles of cetiedil associate with 1.33 mg membranes or 1.6 x 10^8 cetiedil molecules per ghost (assuming 5.7 x 10^{-10} mg protein per ghost (68)), which is an enormous amount of cetiedil associated with membranes.

IV.2.3 Cetiedil Partitioning between the Membranous Lipid and Buffer Phases

IV.2.3.1 Absorption Spectral Changes Induced by Membrane Lipids

When DPPC vesicles were added to a solution of cetiedil (100 µM) in buffer, some of the cetiedil molecules partitioned into the lipid phase. This produced a spectrum that included both the absorbance of cetiedil in buffer (with a maximum at 233 nm) and the absorbance of cetiedil in the lipid phase (with a maximum at a higher wavelength). The difference in the wavelength maxima for the two systems was too small for the two peaks to be resolved. Instead, the two peaks appeared as one with an increasing wavelength maximum on lipid addition. A plot of lipid concentration versus wavelength maximum (nm) is shown in Figure 11. After adding 90 µM DPPC, the wavelength maximum shifted to 237 nm. In this range of lipid concentration, the extinction coefficient of cetiedil remained constant.

Next, the shift in wavelength maximum of cetiedil was followed after adding erythrocyte membrane. A similar shift in the wavelength maximum of
Figure 10. The relationship between the total and the free cetecidil concentrations in a membrane sample (1.33 mg/mL) in 5 mM phosphate buffer with 150 mM NaCl.
Figure 11. Plot of $\lambda_{\text{max}}$ of 100 µM cetiedil versus lipid concentration. The spectra were scanned in the region 290 - 220 nm to determine the absorption maxima.
cetiedil was observed as in the case of DPPC vesicles. This suggested that the shift in the wavelength maximum of cetiedil in the presence of erythrocyte membranes was due to the partitioning of cetiedil in the lipid phase in membrane. An isosbestic point was observed at about 235 nm, which indicated that there were only two spectrally distinct forms of cetiedil. These forms were assumed to be the free form and the lipid associated form of cetiedil.

IV.2.3.2  **Partition Coefficient of Cetiedil in Membrane Lipid**

Figure 12 shows a typical difference spectral titration of 400 µM cetiedil with erythrocyte membrane lipids in 5P7.4/NaCl buffer at room temperature. As the lipid concentration increased, the spectral amplitude also increased, indicating increased partitioning of cetiedil into the membranous lipid phase (51). From the double reciprocal plot of $1/[\text{Lipid}]$ vs $1/\text{A}$ (Figure 13), $K_p$, the partition coefficient of 400 M cetiedil was determined as $3.51 \pm 0.85 \times 10^5$ (n=5 runs and 53 data points).

Using the $K_p$ value of cetiedil, the number of molecules of cetiedil associated with the lipids can be calculated. Accordingly, the number of cetiedil molecules associated with 665 µM lipids (equivalent to 1.33 mg/ml protein concentration used to calculate bound cetiedil in section IV.2.2) was calculated as $3.8 \times 10^8$. From the centrifugation method, under similar conditions, the number of cetiedil molecules bound to the membrane (both proteins and lipids) was calculated as $1.28 \times 10^7$ (Section IV.2.2).

The calculated number of cetiedil molecules associated with the lipid phase does not agree with the total number of cetiedil molecules associated with the membrane. Although the double reciprocal plot gave a good fit,
Figure 12. Difference spectral titration of 400 µM cetiedil with human erythrocyte membranous lipids in 5 mM phosphate buffer with 150 mM NaCl, pH 7.4 at room temperature. Increasing size curves correspond to increasing lipid concentrations.
Figure 13. Double reciprocal plot of the UV difference data, $1/\delta A$ vs $1/[\text{Lipid}]$. 
there is 24% error associated with the estimated $K_p$ value. One of the possible sources of error in the $K_p$ estimate is in the accuracy of the lipid concentration used in the spectral titrations. A 10% error in the lipid concentration significantly changes the slope and intercept of the double reciprocal plot, which in turn affects the $K_p$. With this variation in the lipid concentration, the $K_p$ value is in the range $10^4$ to $10^5$. If $K_p$ is $10^4$ rather than $3.5 \times 10^5$, the calculated bound cetiedil would be $1.09 \times 10^7$. Another source of error could be from the centrifugation method. Amphiphilic molecules such as chlorpromazine are known to solubilize membrane lipids (50). Since the centrifugation method is a separation technique, it is possible that some of the lipid-associated cetiedil may be in the supernatant. This would reflect as somewhat higher free cetiedil concentration in the aqueous phase. Thus, the value for the number of cetiedil molecules associated with the membrane lipids calculated from the partitioning experiments ($10^7$ to $10^8$) is a maximum estimate. The number of cetiedil associated with ghosts is about $1 \times 10^7$ (probably an underestimate) and the number of cetiedil associated with Band 3 is about $2 \times 10^5$. Thus most of the cetiedil that are associated with the ghosts are distributed among the lipid phase in the membrane.

IV.2.4 **Effect of Cetiedil on Lipid Spin Label Mobility**

The fatty acid spin probe, 5-doxyl stearate, intercalates amongst the lipid molecules in the membrane, with the nitrooxide moiety of the 5-doxyl stearate located near the carbonyl group of phospholipid molecules, and has been used to monitor the behavior of the lipid molecules near the polar head groups (86). Although these spin probes are easy to use, there has been some criticism of their uses in membrane studies since the spectral data are often over
interpreted (87). In this study, the label was simply used to find out whether cetiedil affected the lipid component in membrane, and no attempt was made to obtain quantitative information on the dynamics of the lipid molecules. Figure 14 shows a plot of the hyperfine separation as a function of total cetiedil concentration in the membrane sample. As the concentration of cetiedil increased, the HFS values decreased indicating a change in the mobility or environmental polarity of the spin probe upon addition of cetiedil to the membrane. This change may be due to the effect of cetiedil on the organization of the lipid molecules. At a pH of about 6.3 (in 5P7.4/NaCl buffer) and 37 °C, the HFS values decrease from about 52 G to about 45 G when 10 to 15 mM cetiedil was present in the membrane sample that had a protein concentration of 2 mg/mL. The effect appears to level off at about 6 mM cetiedil. This suggests that the interaction of cetiedil with the membrane lipids is a saturable process under the conditions of the present study.

IV.2.5 Effect of Cetiedil on Membrane Proteins

Mal-6 spin label was used to monitor the effect of cetiedil on membrane proteins of both normal and sickle cells. The Mal-6 spin labels alkylate primarily the sulfhydryl (SH) groups of the protein molecules (40). Our earlier finding shows that about 20 % of the erythrocyte membrane protein SH groups are alkylated by Mal-6, and about 80 % of the spin label intensity arises from label sites at the cytoplasmic membrane surface, with most of the spin labels attached to the peripheral proteins, the spectrin-actin complex (88), and one spin label to the Band 3 molecule. The amplitude ratio, W/S, of the EPR spectrum of Mal-6 labeled membranes is very sensitive to such experimental conditions as temperature, ionic strength and pH as well as to molecules
The effects of cetecil on the hyperfine separation of 5-doxyl stearate labeled erythrocyte membrane samples in 5 mM phosphate buffer with 150 mM NaCl at 37 °C.
binding to the cytoplasmic surface of the membranes (40, 41). The W/S values of Mal-6 labeled membranes were measured, in the presence of various amounts of cetiedil in 5 mM phosphate buffer with 150 mM NaCl at 20 °C and 37 °C. As shown in Figure 15, the initial addition of cetiedil to both membrane and simplified membrane samples of normal cells gave a gradual increase in (W/S) at both 20 °C and 37 °C. The four curves shown in Figure 15 were qualitatively similar to each other. They demonstrated that the binding of cetiedil molecules to membranes caused immobilization of some of the spin labels on these membrane samples. In our previous studies, we have shown that changes in the W/S ratios can be directly related to the membrane binding process. The addition of bovine serum albumin, for example, causes no change in the W/S ratios, whereas the addition of hemoglobin causes the W/S values of membrane to decrease (40). The \( \Delta(W/S)_{cet} \) values approached constant values at high concentrations of cetiedil, suggesting that the interaction of cetiedil with membrane proteins was a saturable process under the conditions we studied. Similar data were obtained on membranes from sickle cells at 37 °C.

We also interacted cetiedil with the spectrin-actin sample in 5P7.4/NaCl buffer, and monitored the W/S ratios of the spectrin-actin samples as a function of cetiedil added. Although we observed decreases in the W/S ratios, we also found protein aggregation upon addition of cetiedil, probably due to the acidity of cetiedil causing spectrin-actin precipitation. The pI of spectrin-actin is about 4.5. Thus little quantitative information was obtained by directly interacting spectrin-actin with cetiedil. We have found that the association of cetiedil with the erythrocyte membrane was reversible. The EPR signals of the membrane samples with and without cetiedil were first
Change in (W/S) of Mal-6 labeled erythrocyte membranes as a function of free cetiedil concentration in a typical run of paired samples of intact membrane (o) and simplified membrane (+) interacted with cetiedil at 20 °C (top panel) and 37 °C. The smooth curves are obtained by a nonlinear regression method using the equation discussed in the text.
measured. These samples were then dialyzed overnight in buffer solutions with buffer to sample ratio volume ratios of at least 1,000. The EPR signals of the dialyzed samples were measured again after dialysis. Both samples gave W/S ratios similar to that of the membrane sample without cetiedil before dialysis, indicating that the cetiedil - membrane interaction was non-covalent in nature, and did not cause irreversible changes in the erythrocyte membrane. This is in good agreement with the previous finding that the effect of cetiedil on the erythrocyte is reversible (29).

To obtain quantitative information on cetiedil and membrane binding, such as the apparent K_d values, from the W/S data, the free cetiedil concentration, [C], in cetiedil - membrane mixtures, as shown in Figure 9 was used. After substituting [C] and (W/S)_cet into Equation 5, K_d, n and Δ(W/S)_∞ could be obtained. The n values obtained from these data, both by non-linear regression methods and by the Hill plot were all about 1, indicating that a simple two-state model with multiple independent binding sites that we have previously used was adequate to describe the binding of cetiedil to membrane proteins.

Table 7 shows the values of apparent K_d, Δ(W/S)_∞ and C_1/2 for cetiedil - membrane, cetiedil - simplified membrane systems at 20 °C and 37 °C. All the K_d values are about 2 mM. The half saturation concentration ranges from 1 to 3 mmoles cetiedil per gram membrane proteins.

By using the protein spin label, Mal-6, cetiedil was shown to bind to membranes as well as to simplified membranes (Figure 15). Direct comparison
Table 7. **Equilibrium Binding Parameters in 5 mM Phosphate Buffer with 150 mM NaCl at pH 6.3**

<table>
<thead>
<tr>
<th>Sample</th>
<th>Δ(W/S)$_\infty$</th>
<th>K_d±S.D.(mM)</th>
<th>C (µM/g)</th>
<th>N</th>
<th>t</th>
<th>p*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>20°C</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane</td>
<td>1.92±0.15</td>
<td>2.95±0.64</td>
<td>2.5</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simplified</td>
<td>3.34±0.57</td>
<td>1.89±0.27</td>
<td>1.1</td>
<td>7</td>
<td>3.186</td>
<td>&lt;0.02</td>
</tr>
<tr>
<td>Membrane</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>37°C</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Membrane</td>
<td>3.06±0.43</td>
<td>2.34±0.74</td>
<td>1.4</td>
<td>7</td>
<td>2.682</td>
<td>&lt;0.05</td>
</tr>
<tr>
<td>Simplified</td>
<td>5.30±0.85</td>
<td>1.57±0.56</td>
<td>0.9</td>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The p values were obtained from paired sample student t-test by null-hypothesis.
of the averaged $K_d$ values of the membrane and the simplified membrane samples in Table 7 indicated a slightly lower $K_d$ values for the simplified membrane samples than those for intact membrane samples. However, a paired sample Student's $t$-test of the $K_d$ values indicated that the differences in the $K_d$ values between membrane and simplified membrane samples were not statistically significant either at 20 °C ($p < 0.02$) or at 37 °C ($p < 0.05$), as shown in Table 7. Removal of the spectrin-actin network from the membrane thus did not significantly affect the binding of cetiedil to erythrocyte membrane. The spectrin-actin network is the major component in maintaining the shape of the erythrocyte. The lack of interaction between cetiedil and the spectrin-actin network, as observed by EPR data, suggested that the action of cetiedil in returning sickle to normal shapes was not accomplished by modifying the spectrin-actin network in sickle cells. Other studies indicate that cetiedil inhibits calmodulin-stimulated calcium ATPase activity (34). Calmodulin is present in the erythrocyte, but does not appear to bind to spectrin molecules (89, 90). These findings are consistent with our EPR data.

The simplified membrane sample consists of lipid bilayer and Band 3 protein and other proteins, including ATPases (91). However, the major protein component is the Band 3 molecule. Most of the protein spin labels, if not all, in the simplified membranes are on the Band 3 molecules. Therefore our data suggested interaction of cetiedil with the Band 3 proteins in membranes, with an apparent $K_d$ of about 2 mM at 37 °C. However, these results did not exclude the interaction of cetiedil with other minor proteins in the simplified membranes. The spin label EPR approach will not be sensitive enough to detect such interactions. Additional information on the partitioning of cetiedil in membranes will provide quantitative information on the concentrations of
cetiedil interacting with individual membrane components.

Band 3 is an anion transport protein (92), and may have a role in the membrane to regulate water movement in erythrocyte (93-96). More detailed studies of interactions between cetiedil and Band 3 molecules and interactions between cetiedil and ATPases, for example, may provide insight toward understanding its various drug actions in affecting erythrocyte water contents and Na\(^+\) and K\(^+\) movements across cell membranes.

Since Band 3 seems to be the major protein that interacts with cetiedil, the K\(_d\) value of cetiedil-simplified membrane interaction (Table 7) can be used to calculate the number of cetiedil (C) molecules bound to the membrane proteins (P) under the equilibrium conditions, P + C \(\longleftrightarrow\) PC. From this equation and using the value of K\(_d\), PC, the equilibrium concentration of bound cetiedil was evaluated. Accordingly, at equilibrium, at 400 M cetiedil concentration, the number of cetiedil molecules associated with the membrane proteins was calculated to be 2.06 \(\times\) 10\(^6\) \(\frac{(PC)}{(1/K_d)/([P] - [PC]) - ([C] - [PC])}\), where P and C are the initial concentrations of protein and cetiedil, respectively). Comparing this value with the number of cetiedil molecules associated with the membrane lipids showed that cetiedil preferentially associated with the membrane lipids than with the proteins.

**IV.2.6  Effect of cetiedil on Water Transport across Red Cell Membranes**

Treatment of normal RBC with 390 \(\mu\)M cetiedil increases the hematocrit value of the RBC samples from 60.3 to 67.7 % (Table 8). This indicates that there is an increase in hematocrit value of the samples by 12.3 %. The cell volume of normal control samples was \((9.6 \pm 0.2) \times 10^{-11}\) mL and that of the samples treated with cetiedil was \((10.6 \pm 0.2) \times 10^{-11}\) mL. For sickle cells, the cell volume of the control samples was \((11.4 \pm 0.8) \times 10^{-11}\) mL and that of
Table 8. Effect of Cetiedil on the Hematocrit Values of RBC

<table>
<thead>
<tr>
<th>Sample</th>
<th>RBC</th>
<th>RBC + Cetiedil</th>
<th>SRBC</th>
<th>SRBC + Cetiedil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before Incubation</td>
<td>36.7±0.5</td>
<td>36.7±0.5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>After Incubation at 37 °C for 2 hours.</td>
<td>36.7±0.5</td>
<td>41.7±0.5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>NMR Sample</td>
<td>60.3±1.0</td>
<td>67.7±1.0</td>
<td>55.0±1.0</td>
<td>63.5±0.5</td>
</tr>
<tr>
<td>Cell Volume (10^{-11} mL)</td>
<td>9.6±0.2</td>
<td>10.6±0.2</td>
<td>11.4±0.8</td>
<td>12.7±0.9</td>
</tr>
</tbody>
</table>

1 See section III.1.6
cells treated with cetiedil was $(12.7 \pm 0.9) \times 10^{-11}$ mL (Table 8). Thus cetiedil increased cell volume by 10.4% for normal cells and 11.4% for sickle cells, in good agreement with published values of 10% (24).

Table 9A gives the results of the NMR relaxation measurements of both normal and sickle cells. All the relaxation measurements were performed, as mentioned in the Methods section, on the 200 MHz spectrometer. Measurements of normal cells were made on different batches of samples, whereas for sickle cells, the sample was from a single patient. Hence, the statistics for the comparison of normal and sickle cells would only be qualitative at best.

The relaxation time of water protons decreased for both normal and sickle cells, after treatment with 390 µM cetiedil. The $T_2$ of normal cells is $0.168 \pm 0.0165$ sec and that for the sickle cells is $0.056 \pm 0.003$ sec. The $T_{ex}$ value of normal control cells is $0.0247 \pm 0.0028$ sec whereas for sickle cells is $0.0529 \pm 0.0036$ sec. The paired sample Student's $t$-test of the relaxation times of normal and sickle cells showed that the difference in the relaxation times is significant ($p < 0.0001$) (Table 9B). After incubating the samples with cetiedil, the $T_2$ of normal cells decreased to $0.152 \pm 0.0093$ sec and that for the sickle cells decreased to $0.0442 \pm 0.0022$ sec. The difference between the decreased $T_2$ values for both normal and sickle cells was also found to be statistically significant. Similarly comparing the $T_{ex}$ values of both normal and sickle cell samples before and after treatment with cetiedil showed a significant decrease in the exchange times after addition of cetiedil (Table 9A and 9B). A decrease in the exchange time of water would mean an increase in the water permeability (Equation 17). Water permeability of sickle cells was significantly less than that of normal cells, as shown by Student's $t$-test ($p < 0.001$). The
**Table 9A. Effect of Cetiedil on the Water Exchange Time across RBC**

<table>
<thead>
<tr>
<th>Sample</th>
<th>$T_2$ (s)</th>
<th>$T_{ex}$ (s)</th>
<th>$P_w$ (cm/s)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC</td>
<td>0.1680</td>
<td>0.0247</td>
<td>0.00281</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>±0.0165</td>
<td>±0.0028</td>
<td>±0.0003</td>
<td></td>
</tr>
<tr>
<td>RBC w/Cet</td>
<td>0.1520</td>
<td>0.0152</td>
<td>0.0050</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>±0.0093</td>
<td>±0.0018</td>
<td>±0.0006</td>
<td></td>
</tr>
<tr>
<td>Sickle</td>
<td>0.0560</td>
<td>0.0529</td>
<td>0.00155</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>±0.0028</td>
<td>±0.0036</td>
<td>±0.0001</td>
<td></td>
</tr>
<tr>
<td>Sickle w/Cet</td>
<td>0.0442</td>
<td>0.0393</td>
<td>0.00232</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>±0.0022</td>
<td>±0.0023</td>
<td>±0.0001</td>
<td></td>
</tr>
</tbody>
</table>

**Table 9B. t and p Values of Student's t-test of paired samples on Data Given in Table 9A**

<table>
<thead>
<tr>
<th></th>
<th>RBC &amp; RBC+Cet</th>
<th>SRBC &amp; SRBC+Cet</th>
<th>RBC &amp; RBC+Cet</th>
<th>RBC+SRBC &amp; RBC+Cet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_2$ t</td>
<td>5.25</td>
<td>26.36</td>
<td>5.51</td>
<td>5.88</td>
</tr>
<tr>
<td></td>
<td>0.0006</td>
<td>0.0001</td>
<td>0.0004</td>
<td>0.0002</td>
</tr>
<tr>
<td>$T_{ex}$ t</td>
<td>5.53</td>
<td>17.10</td>
<td>4.71</td>
<td>6.17</td>
</tr>
<tr>
<td></td>
<td>0.0004</td>
<td>0.0001</td>
<td>0.0011</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

1 SRBC refers to sickle RBC.

p values were obtained from paired sample Student's t-test by null-hypothesis.
Diffusional water permeability of normal control cells was $0.00281 \pm 0.00029$ cm/sec and that for sickle cells was $0.00155 \pm 0.00011$ cm/sec, at 37 °C. Treatment of sickle cells with cetiedil however, seemed to enhance the permeability. The permeability of cetiedil-treated sickle cells was comparable to that of normal control cells. The diffusional permeability of normal cells after incubating with cetiedil was $0.00504 \pm 0.00059$ cm/sec and for the sickle cells was $0.00232 \pm 0.00014$ cm/sec. Comparison of the permeability values showed that addition of cetiedil to RBC significantly enhances the water permeability of membranes ($p < 0.001$).

As indicated by previous studies (24), an increase in the cell volume of RBC was observed after treatment with 390 µM cetiedil (10.4 % for normal cells and 11.4 % for sickle cells). This increase in cell volume was attributed to the increase in cell sodium and cell water contents (29).

The observed decrease in the relaxation time of water in RBC treated with 390 µM cetiedil indicates a change in the water environments upon addition of cetiedil. A similar examination of the water exchange times also indicated that water exchange was faster in the presence of cetiedil in both normal and sickle cells. Therefore, cetiedil seems to facilitate the water movements across red blood cell membranes in both cases.

The NMR data showed that the exchange time for sickle cells is greater than that of normal cells. This means that the exchange rate of water in sickle cells is slower compared to normal cells. Previous studies, using a three-state model for cell water, comparing the correlation times of water in the sickle and normal cells indicated that there were more bound water molecules in sickle cells than in normal cells with the correlation time of water molecules of sickle cells greater ($10^{-6}$ sec) than that of normal cells.
Osmotic permeability studies on sickle and normal cells showed reduced water permeability in sickle cells (99). Decreased osmotic or diffusional water permeability of sickle cells is being speculated as being due to increased amounts of sickle hemoglobin bound to the cell membrane which affect the aqueous channels that transport water across the membranes (100, 101). Fung and coworkers have shown that sickle hemoglobin has a higher affinity toward membrane surface than does normal hemoglobin (102). The altered ion and water transport in sickle cells are also attributed to permanent changes in the sickle cell membrane such as irreversibly modified membrane proteins (9), and increased amounts of bound intracellular calcium (7), compared to the normal membranes. Thus, the decreased diffusional water permeability of sickle cell membranes observed in the present study may be due to the bound water molecules inside the sickle cells in addition to the above-mentioned membrane abnormalities.

There seems to be some correlation between the cell volume increase and the corresponding permeability increase, upon addition of cetiedil. Cetiedil has been shown to increase cell sodium and cell water contents. At 300 µM cetiedil concentration Schmidt and coworkers observed a 11 % increase in the cell water (28). From the hematocrit measurements of the normal RBC samples, comparison of the volume of water inside the cells indicated a 12.3 % increase after incubating the cells with 395 µM cetiedil, at 37 °C for 2 hours. The hematocrit value increased from 60.3 before incubation to 67.7 after incubation. Similarly, for sickle cells, the increase in water content inside the cells after incubating with cetiedil was 15.5 % (Table 10).

In order to correlate the increase in water content inside the cells with the changes in the relaxation behavior of water, the echo amplitude of the
water before and after incubating the cells with cetiedil was measured. The packed cells were used for this purpose, since the echo amplitude represented mainly the contribution from intracellular water. For normal cells, there was a 12.3% increase in the echo amplitude after incubating the cells with cetiedil, which is the same as the increase measured from the hematocrit values. For sickle cells, the increase in the echo amplitude was 28.7%, compared to 15.5% increase from the hematocrit values (Table 10). The source of the discrepancy between these two values is not known. These increases in amplitudes for both normal and sickle cells suggested that the water content of the cells increased after incubating with cetiedil.

Water transport across the red cell membranes is usually explained in terms of "channels" or "pores" (94 - 96). Although the mechanism of water transport is far from clearly understood, the presence of aqueous channels at the interface between the Band 3 subunits has been suggested (95). Water transport by "leak" pathway (diffusion through lipids) also has been suggested and observed (66). For the present study, the "composite" diffusional permeability (both channel as well as leak) was measured. The increase in the diffusional permeability of the membranes to water after incubating with cetiedil suggests that these pathways are affected.
Table 10. Effect of cetiedil on the cellular water content

<table>
<thead>
<tr>
<th>Sample</th>
<th>$W_i$ (^1) (mL)</th>
<th>% increase (^2)</th>
<th>$\Delta$ (^3)</th>
<th>% Increase (^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC</td>
<td>0.603 ± 0.010</td>
<td>485.74 ± 54.33</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td>RBC w/Cet</td>
<td>0.677 ± 0.010</td>
<td>545.46 ± 14.45</td>
<td></td>
<td>12.3</td>
</tr>
<tr>
<td>Sickle cells</td>
<td>0.550 ± 0.010</td>
<td>206.59 ± 4.47</td>
<td></td>
<td>15.5</td>
</tr>
<tr>
<td>Sickle Cells</td>
<td>0.635 ± 0.005</td>
<td>265.88 ± 5.32</td>
<td></td>
<td>28.7</td>
</tr>
</tbody>
</table>

\(^1\) $W_i$ is water inside the cell (mL). See section III.1.6 for sample volume measurements.

\(^2\) % increase = \(\frac{W_i (\text{Cell + Cet}) - W_i (\text{Cell})}{W_i (\text{Cell})}\)

\(^3\) Echo amplitude measured in arbitrary units.

\(^4\) % Increase = \(\frac{A (\text{Cell + Cet}) - A (\text{Cell})}{A (\text{Cell})}\)
Optical data of cetiedil show that it has a maximum absorption at 233 nm with an $E_{233}$ of 2796 M$^{-1}$ cm$^{-1}$. Cetiedil citrate molecule at high concentration is quite acidic, and forms micelles. The critical micelle concentration of cetiedil in phosphate buffer with 150 mM NaCl is about 8.8 mM.

Conformational studies of cetiedil in D$_2$O using $^{13}$C NMR spectroscopy, show that the cyclohexyl moiety of cetiedil is in the chair conformation. The study also indicates that the molecule seems to undergo an overall conformational change as the polarity and the ionic strength of the solvent change. $^1$H NMR studies of cetiedil show that at concentrations above 7 mM, cetiedil exists as an equilibrium mixture of, possibly, monomers and aggregates.

$^{13}$C and $^1$H NMR data of cetiedil in the presence of membranes show that the molecule may have a preferred orientation in the membranes. Cetiedil resonances in general are broader in the presence of membranes. The carbonyl carbon of cetiedil is relatively less affected than the rest of the molecule. The linewidth of the carbonyl carbon increases by 3.2 Hz in the presence of membranes compared to 5.5 - 13.5 Hz increase for the remaining carbon atoms in the molecule. This may suggest that the nonpolar regions of the molecule are more involved with the membrane components than the polar regions.

This study shows that a large amount of cetiedil may associate with membranes. The partition coefficient of 400 µM cetiedil in the membrane lipids at 23 °C and pH 7.4 is about $10^4$ - $10^5$ and the free energy of transfer from the aqueous phase to the membranous lipid phase is about -7.5 kcal/mol at 23 °C.

Cetiedil seems to associate preferentially with the membrane lipids rather
than with the membrane proteins. From the partition coefficient of cetiedil into the membrane lipids, $10^7 - 10^8$ cetiedil molecules are found to be associated with the lipids. The partitioning properties of cetiedil are comparable to those of the amphiphilic amines such as chlorpromazine and methochlorpromazine. Their pharmacological properties (tranquilizing) have been correlated with their membrane solubility, but the mechanism of drug action is not clearly understood. The amphipathic agents are likely to act in four general ways (103); (1) physical expansion of a lipid bilayer leaflet with the displacement or disruption of existing structural lipids and lipid domains (104,105); (2) capture or replacement of essential or regulatory lipids needed for protein function or cell regulation such as polyphosphoinositides (106); (3) disruption of the membrane permeability barrier, such as facilitated ion diffusion or channel formation (107); and (4) inhibition of the membrane protein function by direct modification or damage (108).

The EPR data show that the drug interacts with the membrane proteins, and the binding is saturable and reversible. The half saturation concentration for binding is in the range of 1 - 3 mmoles cetiedil per gram membrane proteins at physiological temperature. The equilibrium dissociation constant for membranes is about 2 mM at pH 6.3 and 37 °C. Removal of spectrin-actin from the membrane does not appear to affect the binding properties of cetiedil significantly, indicating that the spectrin-actin network is not involved in the mechanism of drug action. The results suggest the existence of an interaction between cetiedil and Band 3 molecules, with an equilibrium dissociation constant of about 2 mM. From the equilibrium dissociation constant of cetiedil obtained from the EPR measurements, about $2 \times 10^5$ cetiedil molecules are found to be associated with the membrane proteins. Thus the interaction of cetiedil with
membrane proteins is relatively weak compared to its interaction with the lipids. Our results suggest that at 400 µM concentration, cetiedil molecules distribute in the membrane lipids and proteins and would exist as monomers. At this level, cetiedil does not alter the blood pH, which is in very good agreement with the published studies on the metabolic action of cetiedil (23).

The EPR data also show that cetiedil affects the mobility of the spin labels that intercalate amongst the head groups of the lipid molecules in the membrane. The hyperfine separation (HFS) of the spin label decreases as the concentration of cetiedil increases, and tends to level off about 6 mM cetiedil concentration. The HFS data suggest that cetiedil affects the organization of the membrane lipids.

Cetiedil also has been found to affect the calcium-dependent calmodulin interactions with the membranes (33). The protein spin label EPR data from the present study show that cetiedil interacts with the membrane proteins and lipids. NMR studies, under the same conditions of cetiedil/membrane concentration ratio, temperature and pH, show that cetiedil may have a preferred orientation upon interacting with the membrane components.

In summary, cetiedil seems to exert its action by partitioning preferentially into the membranous lipid phase as well as interacting with the membrane protein Band 3.

Further studies of the interaction of cetiedil with the isolated membrane components such as Band 3 molecules and ATPases, may provide insight toward understanding its various drug actions in affecting the sodium and potassium movements across the cell membranes.

Incubation of normal as well as sickle cells with 390 µM cetiedil at 37 °C for 2 hours increases the hematocrit of the samples. The cell volume of the
normal cells increased by 10.4 % and that of sickle cells increased by 11.4 %.

Due to the presence of more bound water molecules inside the sickle cells compared to normal cells, our NMR relaxation data of water protons of both normal and sickle red cells which show that the water molecules in sickle cells exchange slower with the water molecules outside than the normal cells are in good agreement with previous studies (99). The diffusional water permeability of sickle cells is significantly less than that of normal cells. Treatment of both normal and sickle cells with 390 µM cetiedil significantly decreases their exchange times to increase their diffusional permeability to water. At 37 °C, the permeability of normal cells is 0.0028 cm/sec, and in the presence of cetiedil, this permeability increases to 0.0051 cm/sec. For sickle cells, the permeability is 0.0016 cm/sec, a value much less than that of the normal cells. In the presence of cetiedil, the permeability is increased to 0.0023 cm/sec, a value more similar to that of normal cells. The increase in the diffusional water permeability in the presence of cetiedil is suggested to be due to the effect of cetiedil on the membrane proteins and lipids. The NMR method, however, does not distinguish between the protein and the lipid pathways of water transport. Water transport by leak pathway has been studied in the vesicles formed from the extracted membrane lipids (109). A similar study in the presence and absence of cetiedil might prove useful to determine the effect of cetiedil on the diffusion of water through the lipid bilayers.
BIBLIOGRAPHY


28. W.F. Schmidt, T. Asakura and E. Schwartz (1982), The Effect of
Cetiedil on Red Cell Membrane Permeability. Blood Cells, 8, 289-298.


37. J.D. Morrisett, (1976). The Use of Spin Labels for Studying the Structure


56. Y. Barenholz, D. Gibbs, B.J. Litman, J. Goll, T.E. Thompson, and F.D.


Thermodynamics of All-or-None Water Channel Closure in Red Cells, J. Mem. Biol., 81, 105-111.


Molecular Properties of Cetiedil and its Interactions with Erythrocyte Membranes

C. NAHASMIAN AND L. W.-M. FUNG

Received December 2, 1985, from the Department of Chemistry, Loyola University of Chicago, Chicago, IL 60626. Accepted for publication April 14, 1986.

Abstract—Cetiedil, an antiscickling agent and a vascular smooth muscle relaxant, is an amphiphasic molecule. The critical micelle concentration of 5 mM phosphate buffer with 150 mM NaCl is 8.8 mM. The molecule, as the citrate salt, is highly acidic at millimolar concentrations. The UV absorption extinction coefficient at 233 nm, E\text{\textsubscript{233}} is 2796 M\textsuperscript{-1} cm\textsuperscript{-1}. The studies of free cetiedil concentrations in the presence of membrane ghosts show that large amounts of cetiedil associate with membrane samples. Spin label electron paramagnetic resonance experiments showed that the lipid and the proteins of erythrocyte membrane samples were both affected by the addition of cetiedil. However, the cetiedil effects on membrane components are reversible. The proton spin label results demonstrate the binding of cetiedil to the membrane with an apparent equilibrium dissociation constant of 2 mM. The binding is saturable. The apparent half-saturation concentrations for the binding at physiologic ionic strength and temperature are in the range of 1-3 micromoles of cetiedil per gram of membrane proteins. Our studies also indicate that binding is not affected by the removal of the spectrin and actin network from the membranes. Interaction of cetiedil with band 3 molecules in the erythrocyte membrane is suggested. The regions near the lipid head groups in the membrane samples are also affected by cetiedil.

Although many of the molecular defects of sickle cell disease are quite well characterized, there is at present no specific treatment for its cure or prevention. Few antiscickling agents have been found to be clinically useful. Most antiscickling agents act by modifying the sickle hemoglobin (HbS) molecule either covalently, or noncovalently. Modifying hemoglobin synthesis has also been suggested to be useful. However, cetiedil belongs to another class of antiscickling agents which interacts with the erythrocyte membrane. Cetiedil has also been used in Europe as a vasodilator for chronic cardiovascular disease.

The use of cetiedil, 4(2-hexahydro-1H-azepin-1-ylthethyl)-3-cyclohexyl-3-thiophencacetae, as an antiscickling agent was first explored by Cabannes. Chromium-51 survival studies of cetiedil-treated sickle cells indicated that cetiedil is not toxic to the red cell. Furthermore, intravenous infusion of cetiedil to male volunteers indicated the development of tolerance. Cetiedil is thus considered as a unique, non-toxic antiscickling drug by some physicians. Benjamin et al. observed a decrease in the irreversible sickle cell HbS\text{\textsuperscript{57}} count at 100-200 µM concentrations of cetiedil, but observed no effect at concentrations <50 µM or >500 µM. In another study, 400 µM cetiedil decreased the number of sickle cells under deoxygencated conditions, whereas 10 µM cetiedil decreased ISC counts. Marked (60%) reduction of sickle cells at 100-500 µM cetiedil and 3% oxygen concentrations has also been reported. However, no significant effect was reported when 500 µM to 1 mM concentrations of cetiedil were added to serum at 50% oxygen saturation. The detailed mechanism of the drug action on the erythrocyte is not clear. Cetiedil does not appear to affect or to bind to HbS. Cetiedil increases Na\textsuperscript{+} movement, and inhibits Ca\textsuperscript{2+}-dependent K\textsuperscript{+} movement (the Gardos pathway) across cell mem-

Cetiedil

Experimental Section

Cetiedil Solution—Cetiedil was obtained from McNeil Pharmaceuticals (Spring House, PA) in the form of the citrate salt, and was used without further purification.

Cetiedil is only slightly soluble in water, with a solubility of 0.5 g/dL. Stock solutions that required concentrations >0.5 g/dL, a stock solution was prepared by adding 45 mg of cetiedil to 1 mL of 5 mM phosphate buffer with 150 mM NaCl at pH 7.4 (57.4 NaCl) buffer, followed by sonication for 2 min and centrifugation at 1075 \times g for 5 min to give a clear supernatant, which was then diluted to 30 mM with buffer. The concentration of the supernatant was generally about 2.5-3 g/dL (45-54 mM), as determined by UV absorption measurements. Without sonication, the supernatant was cloudy. The final pH of the 30 mM cetiedil stock solution in 57.4 NaCl buffer was 4.0.

For the pH effect studies, various amounts of 30 mM cetiedil stock solution in 5 mM phosphate with 150 mM NaCl at pH 8 phosphate buffered samples, PBS were added to PBS, or to blood serum, to give a concentration range of cetiedil of 4.5 µM-20 mM. The pH was measured in an open system exposed to air, after the pH values had reached constant values.

For the extinction coefficient determination, a precise amount of cetiedil was weighed to prepare a 150 µM solution, which was subsequently diluted with buffer to give cetiedil solutions of various concentrations.

Cetiedil Extinction Coefficient Measurements—The UV absorption spectra, between 190 and 400 nm, of cetiedil solutions of known concentrations (10-150 µM cetiedil in 57.4 NaCl buffer) were obtained and showed a maximum absorption at 233 nm, as shown in the inset of Fig. 2. A simple linear regression of the absorption values at 233 nm (A\textsubscript{233}) versus cetiedil concentration provided a slope that gave the extinction coefficient of cetiedil.

654 Journal of Pharmaceutical Sciences
Vol. 75, No. 7, July 1986
0022-3549 86 0700-0654$01.00 © 1986, American Pharmaceutical Association

112
Critical Monocule Concentration Determination. Since cetidil is an amphiphilic molecule, its solubility in water is limited. At high concentrations, it forms a film on the water-saline monomer-membrane in equilibrium. The critical monocule concentration (CMC) of cetidil was defined and determined according to the method of Phillips. A mass-action model of micelle formation was used. At the CMC, the third derivative of an ideal colligative property of the amphotile, A_3, of cetidil for this work, with respect to concentration, C, is zero, so A_3 = 0. The A_3 of cetidil solutions in the concentration range of 1-15 mM were measured using a narrow path length, 1.0 or 0.2 mm, optical cell. The absorbance values at different concentrations were fitted to polynomial equations of a varying order. The third derivatives of these equations with respect to concentration were set at zero to solve for the CMC values.

Spin Labelled Membrane Samples. Hemoglobin-free white membranes (goblet cells) were isolated and suspended in 0.1 M NaCl at pH 7.4 and incubated in 0.01 M phosphate buffered saline (PBS) containing 5 mM cetidil citrate, 100 µM succinylacetone, and 3.1 mM 5-doxyl N-tetracat to reduce the spin label mobility, cetidil, and PBS at 25 °C. The PBS was adjusted with NaOH to pH 7.4 ± 0.2. The samples were incubated at 37 °C for 2 h. Excess spin label was removed by dialysis against PBS buffer until the samples gave constant EPR signals.

The malmodine spin labeled, spectrin-actin depleted membranes were prepared by incubation of labeled membranes at 37 °C in 0.3 mM phosphate buffered saline (PBS) with 1 mM N-tetracat to solubilize spectrin-actin, which was then removed by centrifugation. Lowry protein assays were carried out on the intact membrane and the supernatant resulting from centrifugation. Generally, > 90% of the protein remained in the membranes, depleted of the spectrin-actin network. The proteins of these simplified membrane samples were mainly Band 3 protein, as shown by SDS-PAGE polyacrylamide gel electrophoresis, using the methods of Fairbanks et al. A fatty acid spin probe, 13-cis-lg-cis-4,4-dimethyl-2-ethylcyclo-3-methyl-5-doxyl stearate (Syea, Palo Alto, CA) was also used to label membrane ghost samples. Membrane samples in 0.1 M NaCl buffer were deduced in 5 mM 4 NaCl buffer before incubation with 5 mM doxyl stearate at a concentration of 100 µg/mg protein for 30 min at room temperature. Since the membranes have about equal amounts of proteins and lipids by weight, the spin label to lipid molar ratio was 1:6.

Cetidil-Membrane Samples. The malmodine spin labeled and simplified membrane samples were dialyzed in 5 mM NaCl overnight. Samples of the 5 doxyl stearate spin labeled membranes in 5 mM NaCl were used directly. The protein concentrations of these samples were determined by the modified Lowry assay and adjusted to 4 mg/ml for the malmodine spin labeled samples, and to 6 mg/ml for the 5-doxyl stearate labeled samples. Various volumes 20-200 µl of cetidil stock solution were added to 100 µl membrane samples. A solution of 150 mM NaCl and 5 mM NaCl was used as a pH 4.0 was used as control solution (5/4 NaCl, since the cetidil stock solution in 5/4 NaCl has a final pH value of 4. A volume of this solution was added to each spin labeled membrane and cetidil mixture to give a final volume of 300 µl. The final pH of all samples was 6.3. The concentrations of cetidil in the millimolar range and of membrane proteins in the mg/ml range needed in this study were higher than those used in previous studies, in which pH concentration cetidil per µl proteins were used. However, the cetidil-to-protein ratio in both cases are millimolar of cetidil per gram of protein. In these previous studies, cetidil concentrations of 10 mM or more are concentrated to µl cetidil per µl proteins. We have simply used the ratio of "cetidil added to protein present" as a point of reference.

Electron Paramagnetic Resonance Experiments—EPR samples were introduced into 50 µl capillary tubes, following the procedures used in this laboratory. An EPR spectrometer (Varian model E109) interfaced with a time averager (Nicolet model 555), was used to obtain the EPR spectra. The temperature of the EPR measurement was controlled and monitored to ± 0.1 °C. Standard EPR spectrometer settings were used.

Electron Paramagnetic Resonance Data Analysis of 5-Doxyl Stearate Labeled Samples—The hyperfine separation (HFS) of the high field and low field EPR signals of labeled membrane samples were measured as a function of cetidil concentration.

Electron Paramagnetic Resonance Data Analysis of the Maleimid-Labelled Samples—The WS ratios of membrane samples without cetidil, WS_C, and of membranes with a specific amount of cetidil present, WS_C, were measured. The difference between WS_C and WS_C, was calculated and used to obtain quantitative information on the interaction between cetidil (C) and membrane (M).

A general cooperative binding model is first assumed for membranes with n binding sites. M + nC → MC_n. The equilibrium dissociation constant, K_d, is equal to C/M • MC_n, where M is the final membrane concentration, C is the concentration of free cetidil, in equilibrium with the bound cetidil, and MC_n is the concentration of the membrane-cetidil complex. If f_C is the fraction of membrane interacting with cetidil, then f_C = MC/M • C. Combining the aforementioned K_d and f_C expressions, we obtain:

\[ f_C = \left(1 + K_d[C]\right)^{-1} \]  
(1)

Assuming that the changes in the WS ratio observed on addition of cetidil to the membrane are the direct results of cetidil interacting with the membrane to reduce the spin label mobility, the EPR data could be related to f_C to obtain values for K_d. Assuming WS_C, the WS value for membrane bound with cetidil, then WS_C = f_C WS_C + (1 - f_C) WS_C. Or:

\[ \Delta WS_C = f_C \Delta WS_C \]  
(2)

where \Delta WS_C = WS_C - WS_C. Substituting eq. 1 into eq. 2 gives:

\[ \Delta WS_C = \Delta WS_C \left(1 + K_d[C]\right)^{-1} \]  
(3)

When n = 1, eq. 3 became the equation for the two-state binding model for membranes with multiple independent binding sites, M + C → MC. Values of \Delta WS_C and C are experimentally determined and K_d and \Delta WS_C are obtained from eq. 3 using nonlinear regression methods. The n values, which indicate the cooperativity of binding, are also obtained by Hill plots. The half saturation concentration, C_50, is the cetidil concentration that gives a \Delta WS_C value that is one-half of the \Delta WS_C value, and is obtained from the nonlinear regression fitted curves.

Results and Discussion

The pH Effect of Cetidil—Figure 1 shows the pH of the drug molecule, cetidil citrate, in phosphate buffered saline (PBS) and in blood serum as a function of concentration. In PBS, addition of 500 µM cetidil citrate causes the pH of the buffer to drop from 8.0 to 7.7. At 20 mM cetidil citrate, the pH is 6.3, and at 30 mM, the pH is 4.0. This sharp change in pH on addition of cetidil citrate to buffer is probably due to the citrate moiety present with cetidil as a counterion. The pK_a of citric acid is 4.76 and the pK_a of the citric acid is 2.14 at 25 °C. The first ionizable proton (pK_a = 3.1) of the three carboxylic groups in citrate is neutralized by the positive charge on the tertiary ammonium ion of the zwitter ring, which has a pK_a of 10. The citrate citric acid and citric acid in PBS were similar.

The pH effect of the drug molecule was also tested on blood serum in a similar manner. Although the pH profile of
Cetidil citrate in serum in Fig. 1 looks similar to that in PBS, the curve is shifted slightly to the right indicating that the buffering capacity of blood serum is somewhat better than that of PBS. The pH of the serum remains constant on addition of cetidil citrate up to about 0.5 mM, and it drops to about 6.5 at 29 mM cetidil citrate.

The concentration of cetidil citrate used in clinical and cellular studies is usually in the range 100–500 µM. If this amount of cetidil citrate is evenly distributed, then the change in pH due to cetidil will be minimal. However, if cetidil is more soluble in one part of the membrane than another (for example, more soluble in hydrophobic or hydrophilic environments), then accumulation of the drug in the membrane may lead to local concentrations higher than 100–500 µM, which may change the local pH in the membrane. The acidic citrate ions are more soluble in aqueous solution or serum, but less soluble in the membrane bilayers. The basic cetidil moiety is more soluble in the membrane bilayers than in an aqueous solution. Since patients treated with cetidil citrate received 25–50 mg cetidil per treatment, it is important to ensure that the concentration of cetidil or the solution administered to patients is not great enough to cause a sudden pH drop in serum. It also appears that a different counterion which has a more neutral pH may be more desirable.

Extinction Coefficient of Cetidil—The molar extinction coefficient at 233 nm (ε_{233}) was determined to be 2796 M⁻¹ cm⁻¹ from a linear plot of A_233 vs. cetidil concentration over the range of 10–150 µM. The chromophores in cetidil appear to be the thiolene (sulfur-containing five-membered ring) and the azepine (nitrogen-containing seven-membered ring) groups, both of which absorb in the UV region. For thiolene, the maximum absorption is at 231 nm, and the ε_{233} is 7,100 M⁻¹ cm⁻¹, and for azepine, the maximum absorption is at 226–229 nm, and the ε_{233} is 13,780 M⁻¹ cm⁻¹.

Critical Micelle Concentration of Cetidil—Figure 2 shows that the A_{233} values of cetidil in SP7.4/NaCl buffer level off at higher cetidil concentrations. The instrument performance at high absorbance was checked to ensure linear response. Straight lines were obtained for absorbance versus concentration plots for benzoic acid at 230 nm, and for hemoglobin solutions at 280 nm. Light scattering at 233 nm was also checked by monitoring the absorbance of membrane solutions. A linear response was also obtained at high absorbance (2–3). The leveling-off phenomenon in cetidil solutions at high concentration must thus be due to micelle formation. The relationship between the absorbance and concentration was fit to polynomial equations to determine the critical micelle concentration. Polynomial equations with orders of 4, 5, 6, 7, and 8 all gave reasonably good fits to the experimental data. The average value of the CMC obtained from the fitted polynomial equations was 8.8 ± 0.3 mM.

Since the CMC was well above the 500 mM concentration range used in clinical and cellular studies, cetidil would exist as monomers in those studies, if it were evenly distributed. In the case where local accumulation of cetidil to a concentration above 8.8 mM could occur, then cetidil would exist as both monomers and micelles.

Cetidil-Membrane Interaction—We determined the free cetidil concentration in the presence of membrane ghosts, by measuring the UV absorbance of the supernatant resulting from centrifugation, as discussed above. Figure 3 shows the concentration relationship between free cetidil and total cetidil citrate added in the presence of 1.33 mg/ml membranes. The slope of the fitted line is 0.88. About 85% of...
cetiedil remains in solution as free cetiedil. For example, at a 5 mM cetiedil citrate concentration, 0.5 μmol of cetiedil associates with 1.33 mg membranes, or 1.6 x 10¹⁰ cetiedil molecules per ghost (assuming 5.7 x 10⁻¹⁷ mg protein per ghost), which is an enormous amount of cetiedil associated with membranes.

Effect of Cetiedil on Membrane Lipids—The fatty acid spin probe, 5-doxyl stearate, intercalates among the lipid molecules in the membrane, with the nitroxide moiety of the 5-doxyl stearate located near the carbonyl group of phospholipid molecules, and has been used to monitor the behavior of the lipid molecules in the region near the polar head groups. Although these spin probes are easy to use, there has been some criticism of their uses in membrane studies since the spectral data are often over interpreted. In this study, we simply use the label to find out whether cetiedil affected the lipid component in membrane, and no attempt was made to obtain quantitative information on the dynamics of the lipid molecules. Figure 4 shows a plot of the hyperfine separation (HFS) as a function of total cetiedil concentration in the membrane sample. As the concentration of cetiedil increased, the HFS values decreased indicating a change in the mobility or environmental polarity of the spin probe upon addition of cetiedil to the membrane. At a pH of ~6.3 in 5 mM NaCit buffer and 37 °C, the HFS values decreased from ~10-15 MHz when 10-15 mM cetiedil was present in the membrane sample that had a protein concentration of 2 mg mL⁻¹.

Effect of Cetiedil on Membrane Proteins—We used the maleimide spin label to monitor the effect of cetiedil on membrane proteins of both normal and sickle cells. The maleimide spin labels alkylate primarily the sulfhydryl (SH) groups of the protein molecules. Our earlier finding shows that ~20% of the erythrocyte membrane protein SH groups are alkylated by the maleimide spin label, and ~80% of the spin label intensity arises from label sites at the cytoplasmic membrane surface, with most of the spin labels attached to the peripheral proteins, the spectrin-actin complex, and one spin label to the Band 3 molecule. The amplitude ratio, W/S, of the EPR spectrum of the maleimide labeled membranes is very sensitive to such experimental conditions as temperature, ionic strength and pH as well as to molecules binding to the cytoplasmic surface of the membranes. We measured the W/S values of the maleimide labeled membranes in the presence of various amounts of cetiedil in 5 mM phosphate buffer with NaCl at 20 and 37 °C. As shown in Figure 5, the initial addition of cetiedil to both membrane and simplified membrane samples of normal cells gave a gradual increase in Δ(W/S) at both 20 and 37 °C. The four curves shown in Figure 5 were qualitatively similar to each other.

![Figure 4](image-url) - The effects of cetiedil on the hyperfine separation of 5-doxyl stearate labeled erythrocyte membrane samples in 5 mM phosphate buffer with 150 mM NaCl at 37 °C.

![Figure 5](image-url) - Change in (W/S) of the maleimide labeled erythrocyte membranes as a function of free cetiedil concentration in a typical run of paired samples of intact membrane (a) and simplified membrane (b) that were allowed to interact with cetiedil at 20 °C (top panel) and 37 °C (bottom panel). The smooth curves are obtained by a nonlinear regression method using the equation discussed in the text.

They demonstrated that the binding of cetiedil molecules to membranes caused immobilization of some of the spin labels on these membrane samples. In our previous studies, we have shown that changes in the W/S ratios can be directly related to the membrane binding process. The addition of bovine serum albumin, for example, causes no change in the W/S ratios, whereas the addition of hemoglobin causes the W/S values of membrane to decrease. The Δ(W/S) values approached constant values at high concentrations of cetiedil, suggesting that the interaction of cetiedil with membrane proteins was a saturable process under the conditions we studied. Similar data were obtained on membranes from sickle cells at 37 °C.

We also studied the interaction of cetiedil with the spectrin-actin sample in 5P7.4NaCit buffer, and monitored the W/S ratios of the spectrin-actin samples as a function of the cetiedil added. Although we observed decreases in the W/S ratios, we also found protein aggregation upon addition of cetiedil, probably due to the acidity of cetiedil causing spectrin-actin precipitation. The isoelectric point, pI, of spectrin-actin is ~4.5. Thus little quantitative information was obtained.

We have found that the association of cetiedil with the erythrocyte membrane was reversible. The EPR signals of the membrane samples with and without cetiedil were first measured. These samples were then dialyzed overnight in buffer solutions with buffer to sample volume ratios of at
of cetidil with other minor proteins in the simplified membranes. The spin label EPR approach will not be sensitive enough to detect such interactions. Additional information on the partitioning of cetidil in membranes will provide us with quantitative information on the concentrations of cetidil interacting with individual membrane components.

Band 3 is an anion transport protein, and may have a role in the membrane to regulate water movement in erythrocytes. More detailed studies of interactions between cetidil and Band 3 molecules and interactions between cetidil and ATPases, for example, may provide insight toward understanding its various drug actions in affecting erythrocyte water contents and Na⁺ and K⁺ movements across cell membranes.

### Conclusions

Our optical data show that cetidil has a maximum absorption at 273 nm with an E_{295} of 2.796 M⁻¹ cm⁻¹. The cetidil citrate molecule at high concentration is quite acidic, and may form micelles. The critical micelle concentration of cetidil in phosphate buffer with 150 mM NaCl is ~8.8 mM.

This study shows that a large amount of cetidil may associate with membranes. The study further demonstrates that cetidil interacts with both the lipid component and the protein component in the membranes.

The EPR data show that the drug interacts with the membrane proteins, and that the binding is saturable and reversible. The half-saturation concentration for binding is in the range of 1-3 mmol cetidil per gram membrane proteins at physiological temperature. The equilibrium dissociation constant for membranes is ~2 mM at pH 6.3 and 37°C. Removal of spectrin–actin from the membrane does not affect the binding properties of cetidil, indicating that the spectrin–actin network is not involved in the mechanism of drug action. Our results suggest the existence of an interaction between cetidil and Band 3 molecules, with an equilibrium dissociation constant of ~2 mM.

The EPR data also show that cetidil affects the mobility of the spin labels that intercalate amongst the head groups of the lipid molecules in the membrane. The detailed effects of cetidil on lipid molecules are not clear at this point.

### References and Notes

Acknowledgments

We thank Dr. M. Westerman and his staff of Mount Sinai Hospital of Chicago for providing us with sickle cells, and thank the staff of American Red Cross Blood Services, Chicago, for normal blood. We would also like to thank McNeil Pharmaceuticals, PA, for their generous supply of citrate throughout this project. This research was supported in parts by the National Institutes of Health (HL-31145 and HL-16908), Wayne State University Comprehensive Sickle Cell Center Grant, L.W.-M.F. as a National Institutes of Health Research Career Development Awardee (K04 HL-01190).
The dissertation Submitted by Chakravarthy Narasimhan has been read and approved by the following committee:

Dr. Leslie Wo-Mei Fung, Director
Professor of Chemistry, Loyola

Dr. Michael E. Johnson
Professor of Medicinal Chemistry and Pharmacognosy,
University of Illinois at Chicago

Dr. Duarte Mota de Freitas
Assistant Professor of Chemistry, Loyola

Dr. Kenneth W. Olsen
Associate Professor of Chemistry, Loyola

Dr. Albert J. Rotermund
Associate Professor of Biology, Loyola

The final copies have been examined by the director of the dissertation and the signature which appears below verifies the fact that any necessary changes have been incorporated and that the dissertation is now given final approval by the Committee with reference to content and form.

The dissertation is therefore accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

November 25, 1986
Date

Leslie Wo-Mei Fung
Director's Signature