1973

Similarity and the Attribution of Responsibility

John Allen McKillip

Loyola University Chicago

Recommended Citation
https://ecommons.luc.edu/luc_theses/2674

This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 1973 John Allen McKillip
Similarity and the Attribution of Responsibility

By

Jack McKillip

A Thesis Submitted to the Faculty of the Graduate School of Loyola University in Partial Fulfillment of the Requirements for the Degree of Master of Arts

February 1973
ACKNOWLEDGEMENTS

I would gratefully like to acknowledge the help, criticisms, and support I received in this work. Thanks to Eugene B. Zechmeister for the original impetus for the study, to Thomas P. Petzel for his insightful criticisms and work on the thesis committee, and especially to Emil J. Posavac not only for his professional assistance but also for his enthusiastic support throughout the long process of completion.
Life

John Allen McKillip, Jr. was born June 3, 1948 in Los Angeles, California. He graduated from Quigley Preparatory Seminary North in June, 1966. He attended Niles College of Loyola University for two and one half years before transferring to the College of Arts and Sciences, where he received a Bachelor of Science degree in Psychology in June of 1970.

John entered the graduate program in Social Psychology at Loyola in September, 1970. He first served as research assistant to Dr. Eugene B. Zechmeister. In his second year he held the same position under Dr. Emil J. Posavac.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>LIST OF TABLES</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
</tbody>
</table>

CHAPTER

I. INTRODUCTION ... 1

II. METHOD .. 11

 Subjects .. 11

 Stimulus Materials 11

 Procedure .. 15

III. RESULTS .. 17

 Perceived Similarity and Severity 17

 Attribution of Responsibility 21

IV. DISCUSSION .. 34

REFERENCES .. 38

FOOTNOTES ... 41

APPENDICES

I. Basic Accident Report 42

II. No Permission Report 43

III. Marijuana Smoking Report 44

IV. Dependent Ranking Scale 45

V. Drug Questionnaire 47
LIST OF TABLES

Table Page
1. Set of Orthogonal Weights of Analysis.......... 16
2. Mean Perceived Similarity Scores.................. 18
3. Analysis of Variance for Perceived Similarity.... 19
4. Analysis of Variance for Perceived Severity...... 22
5. Mean Attribution of Responsibility Scores....... 24
6. Analysis of Variance for Attribution of Responsibility... 26
7. Overall Intercorrelations of Dependent Measures... 28
8. Intercorrelations of Dependent Measures of Marijuana Smoking Report.............................. 29
9. Analysis of Variance for Size of Fine............... 32
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mean Similarity Rating for Comparison of Marijuana Smoking Report with Other Reports and Regular Users</td>
<td>20</td>
</tr>
<tr>
<td>2.</td>
<td>Mean Attribution of Responsibility for Accident Reports and Drug Groups</td>
<td>23</td>
</tr>
<tr>
<td>3.</td>
<td>Mean Attribution of Responsibility for Comparison of Marijuana Smoking Report with Other Reports and Regular Marijuana Users with Non-regular Users</td>
<td>27</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Kelley (1967) has defined attribution as a pseudo-experimental process by which a person perceives or infers properties of his environment. Attribution of responsibility is the process by which an observer assigns responsibility to an actor for his behavior and by which he determines whether the actor's behavior was internally or externally motivated. An actor's behavior will be perceived as internally caused if it would be duplicated by the actor in different situations, at different times and in different ways and if another actor would not behave similarly in these situations and at these times. If any of these conditions are not met, the observer will be less sure of the attribution of motivation to the actor and might be more willing to place the cause of behavior in the external environment. Kelley enumerates a number of factors which contribute error to this attribution process, i.e., the mislabelling of behavior as internally or externally caused. First is the tendency for behavior to engulf the field. The actor will generally be perceived as responsible for the consequences of his behavior. Lerner (1965a; 1965b; Lerner & Matthews, 1967) has demonstrated that the victim will be judged responsible for his actions and either deprecated if the fate is negative or become more attractive if the fate is positive. These judgments are viewed as the result of the observers need to believe in a just world. Second, the observer will tend to make egocentric assumptions; he will tend to attribute his own intentions to the behavior of others. Kelley does not cite any research to support the
existence of this factor but insists such assumptions can help account for "systematic differences in attributions between the individual and the person observing him" (p. 220). Third, the observer will attribute responsibility differentially as the magnitude of the consequences of the actor's behavior changes. Winer and Kukla (1970) found internal attribution for the causes of either success or failure to increase inversely with the commonness of the event. As fewer others were able to solve a problem and the subject succeeded or fewer others failed to solve a problem and the subject failed, attribution for the cause of the outcome became more internal. More simply, as the degree of success or failure was increased, attributions of responsibility also increased.

Jones and Davis' (1965) theory of correspondent inferences presents a more rational model of the attribution process. The information value of the actor's behavior determines the assignment of intent and dispositions. The observer makes an attribute-effect linkage in light of the non-common effects and the social desirability of the behavior. The fewer the non-common effects and the lower the social desirability of the action, the more correspondent the attribution, the more willing the observer will be to assign a certain disposition to the actor. Neither the relation of the observer to the actor nor the observer's standing on the attribute in question are of crucial importance. "Given an attribute effect linkage which is offered to explain why an act occurred, correspondence increases as the judged value of the attribute departs from the judge's conception of the average person's standing on that attribute" (p. 224, emphasis added).Jones, Worchel, Coathals, and Grunst (1971) found no tendency for a
subject's personal opinion to influence his attribution of that opinion to another. It is on this point that the theoretical stances of Kelley and Jones and Davis diverge and that is a central concern of this investigation. Attribution of Responsibility for an Accident

An example of how the attributional analysis is applied to the assignment of responsibility is Walster's (1966) study in which she found greater attribution of responsibility to the victim of a serious as compared to a mild automobile accident. Under the guise of selecting stimulus materials for a future experiment, she asked college students to assess the responsibility of a high school student for an accident which caused either serious or mild negative consequences. Two parallel experiments were run, one in which there was or was not serious damage to the car and the other in which the serious damage to the car was accompanied by injury to bystanders. In the serious conditions the accident was said to have caused these consequences and in the mild conditions the accident was said to have had only trivial consequences, although the possibility of severe consequences was alluded to. In both accidental situations Walster found that attribution was greater, more correspondent, in the serious condition than in the mild condition. It is of importance to note that one of the objectives of the experimental manipulations was "to avoid making the subject fearful that his opinions were in some way telling the experimenter about his personality" (p. 75). The experiment was structured to avoid having subjects feel personally involved in the attribution process. Walster theorized that when the accident was serious it became unpleasant for the observer to realize that the accident could happen to him. By blaming the victim who
is different, e.g., more careless, the observer can still believe that if he himself were in such a situation his behavior would not have had the same consequences. Kaufmann (1970) presents results which parallel these findings.

However, Walster (1967) and Shaver (1970a, b) failed to replicate the increased correspondence of attribution of responsibility for increased severity of consequences. Walster (1967) found that increased severity significantly lessened attribution of responsibility. Shaver (1970a) found that attribution was more correspondent when the victim of the automobile accident did not have insurance than when he had. However, he found no differences in assigned responsibility for severity of consequences. Shaver (1970b) used a slightly different procedure in attempting to replicate Walster's (1966) results. Subjects were told that they were taking part in a jury study and no attempt was made to prevent involvement with the victim (Experiment I). Walster's results again were not supported. Shaver hypothesized that these failures at replication might be due to differences in perceived similarity of the victim by the observers. In the earlier Shaver (1970a) experiment subjects perceived the victim in the severe consequences condition to be more similar than the mild consequences victim and may have attributed lower responsibility for the severe accident for this reason. No measure of personal similarity to the victim was taken in the other studies.

Shaver (1970b) theorized that the attribution process was more complex than Walster had indicated. When the circumstances surrounding an accident are sufficiently similar to the ones the observer might find himself in, or
if the victim himself is similar to the observer, responsibility will be attributed in a defensive manner. When the victim is seen as different, the observer can easily blame the victim for the accident. However, when the victim is perceived to be similar, the observer can no longer be assured that his own behavior would not have had similar consequences in that situation. When the observer and the victim are similar, it is hard for the observer to maintain that he would be more careful than the victim was; therefore, the victim must not have been responsible for the accident. The observer is not seeking to avoid the consequences of the accident as Walster had theorized, but rather is seeking to avoid blame for these consequences. Walster's (1966) finding of increased attributed responsibility in the severe accident condition, in contrast to Shaver's (1970a) failure to discover this difference, can be understood if her subjects did not perceive themselves to be similar to the victim, presumably as a result of the particular experimental manipulation used.

Support for the role of perceived similarity in lessening the correspondence of attributed responsibility is provided by several studies. Shaw and Sulzer (1964) found that children were less apt to find a child responsible for a negative outcome than they would an adult. This result is, of course, also in line with cultural roles and expectations. Fitch (1970) found that high esteem subjects attributed the cause of their success on an experimental task to themselves and their failure on the same task to external factors. Supposedly the perception of self-responsibility for an undesirable fate (failure) is threatening and therefore external forces are blamed. Lerner (1965a; Lerner & Simmons, 1966) found that attractiveness
of the victim was lower as she was perceived as having higher responsibility for her non-desirable fate. The martyr was particularly rejected. Shaver (1970b) had subjects imagine either that they were similar to the victim of a serious automobile accident or that they differed from him (Experiment II). In line with the defensive attribution hypothesis, imagined-similar victims were assigned significantly less responsibility than imagined-different victims.

Present Research

If the defensive attribution analysis is useful, perceived similarity should make attribution of responsibility less correspondent. This hypothesis fits well with two of the components of bias in the attribution process as outlined by Kelley (1967), behavior engulfing the field and egocentric assumptions. Attribution will be defensive when these factors interact. An egocentric assumption which might function to lessen attribution of responsibility is that a person whose behavior is similar in one situation will be similar in another (accidental) situation. When the consequences of the action (a serious accident) are extreme enough for the behavior to engulf the field, similarity to the actor (victim) will cause responsibility to be assigned in a defensive manner. Such a situation was investigated in the present research.

Since manipulated similarity should lessen attributed responsibility, it was specifically hypothesized that a marijuana smoker will judge a marijuana-smoking victim of a serious automobile accident as less responsible than a non-marijuana-smoking victim, while the non-marijuana smoker will not differentially assign responsibility to these victims (Hypothesis
I). In the case of the marijuana smoker, defensive attribution should be
aroused by the similarity in behavior between the marijuana-smoking victim
and himself. Defensive attribution should not be aroused for non-marijuana
smokers.

Subjects were divided into three groups of marijuana smokers prior to
analysis. Marijuana smokers were regular users (RU) who admitted smoking
marijuana seven or more times and indicated the intention of future use.
Non-regular marijuana users (NU) were divided into two groups: moral
abstainers (MA) who reported that they had never used marijuana and would
not do so in the future; and ambivalents (AMB) who reported both smoking
marijuana once, twice, or not at all and possible future use of the drug.

Restrictions were placed on participation in the experiment and
additional dependent measures were utilized in order to better test the
defensive attribution hypothesis. Only males were included as subjects
because the sex of the victim has been shown to interact with the sex of
observer to influence the attribution of responsibility (Shaver, 1970b,
Experiment III) although the effect of the interaction is far from clear
(Crinklaw & Vidmar, 1971; Shaw & Skolnick, 1971). Also any mention of
injury to additional victims, beside the one actually involved in the
accident, was avoided in order to prevent subjects from identifying them-
selves as similar to someone other than the single victim (Cirnklaw & Vidmar,
1971). Finally, only a serious consequence accident was used, but in three
versions. In one report, no qualifying information was given about the
victim; in another, the victim was said to have taken his parents' car
without permission; and in the third, he was said to have been smoking
Since the assignment of responsibility is an internal attribution, low attribution of personal responsibility should lead to some aspect of the external environment being perceived as the cause of the accident. Both Feather and Simon (1971) and Weiner and Kukla (1970) found attributions of responsibility for success to such internal factors as effort or ability and attributions for failure to external factors such as luck. For the particular accidental situation under study, attributed responsibility should be negatively correlated with the degree to which wet pavement was seen as the cause of the car's spinning out of control and with the degree of control over the car the victim had at the time of the accident (Hypothesis II). Walster (1967) found that as the extremity of the accidental consequences increased, either to the benefit or suffering of the victim, the accident was perceived to be more foreseeable. On the basis of this research, it was hypothesized that foreseeability would be positively correlated with perceived severity of the accident (Hypothesis III). Since the perception of foreseeability seems consistent with the attribution of responsibility, it should be highly correlated with attributed responsibility overall and within the marijuana smoking report condition (Hypothesis IV). Sulzer and Burglass (1968) found attribution of responsibility to be negatively correlated with the personality dimension of empathy and positively correlated with punitiveness. If similarity is taken as indicating empathy with the victim and assigning a fine reflects punitiveness, assignment of responsibility should also be correlated with willingness to assess a fine to the victim for the accident. It was expected that size of
fine would be correlated with this attribution of responsibility and manifest a pattern similar to that of attributed responsibility (Hypothesis V). The RU should assign lower fines to the victim of the marijuana smoking accident than do the NU while these subjects should not differ in their assigned fines to the victims of the other reports.

Four measures were used to assess the effects of the experimental manipulations. Shaver (1970b) distinguishes between personal similarity and situational similarity, however these variables are necessarily confounded. A measure of perceived similarity was used to assess the success of the manipulations at inducing differential similarity to the victim. The drug groups should differ in perceived similarity only in the marijuana-smoking accident condition. Situation similarity should be correlated with perceived similarity and both negatively correlated with attributed responsibility. Subjects rated the severity of the accident to test if differential perceptions of accidental consequences by the drug groups could be used to explain hypothesized differences in assigned responsibility. No drug group by accident report interaction of perceived severity was expected, but attributed responsibility and perceived severity were expected to correlate in light of Walster's (1966) findings. The final measure was of judgmental leniency which was to assess how subjects perceived their own responsibility ratings.

The experiment used a 3 X 3 factorial design in which subjects read one of three accident reports and were divided into one of three drug use groups. An interaction of drug groups by accident reports on attribution of responsibility was hypothesized as a result of difference in the per-
ceived similarity to the victim of the accident in the marijuana-smoking accident report.
Chapter II

Method

Subjects

Subjects were 90 male student volunteers between the ages of 18-20 who were enrolled in psychology classes at Loyola University. An anonymous questionnaire was used to divide subjects into the three drug groups described above. All subjects reported that they had valid driver licenses. In all, data were collected from 149 students, 100 of whom met the qualifications of drug use, age, and possession of driver's license. In those cells in which more subjects than the ten needed qualified, protocols were randomly dropped. This was done, of course, before the dependent measures were coded or analyzed.

Stimulus Materials

Booklets containing all experimental materials were distributed to subjects under the guise of a jury study. Subjects were given what they thought was part of a transcript of a police record of an actual automobile accident, the dependent measures in the form of rating scales, a rationale for the use of a drug survey and then the questionnaire. These experimental manipulations were similar to those employed by Shaver (1970a; 1970b).

On the cover sheet of the experimental booklet, subjects were informed that they were participating in a study of jury functioning and that they would be given part of an actual case which appeared in a Chicago court in the previous year. They were asked to read this information and report their impressions on the scales which followed. The second page of the
booklet included the following information:

COMPOSITE CASE #76: The City of Chicago vs. Lennie B. from the circuit court docket of Judge James P. T., Chicago, Ill. This case involves a license revocation hearing brought against the defendant, Lennie B., a student at a college in the Chicago area.

Both these first two pages were the same for all conditions.

Page three contained the experimental manipulation, one of three accident reports differing in the qualifying information given about the victim. The basic report began with the following information:

...Lennie B. was operating his vehicle, a 1967 Chevrolet which was registered to his parents, north on the Kennedy Expressway. He was returning from a party alone in the late evening on a drizzly night...(p. 92).

Then followed a description of the accident in which the car spun out of control and slid into a lightpost. The driver was said to have been knocked unconscious and to have received a broken leg. Damage done to the car was estimated as $700 and damage to city property at $200. The no permission report added that Lennie B. had supposedly taken his parents' car against their wishes:

...Lennie B. was operating his vehicle, a 1967 Chevrolet which is registered to his parents and which he supposedly had taken contrary to their wishes, north on the Kennedy Expressway. He was returning from a party alone in the late evening on a drizzly night...(p. 92).

The marijuana-smoking report was the same as the basic report except that Lennie B. was said to have been smoking marijuana both at the party and just prior to the accident:

...Lennie B. was operating his vehicle, a 1967 Chevrolet which is registered to his parents, north on the Kennedy Expressway. He was alone in the late evening on a drizzly night. It seems Lennie B. was returning from a party where he had been smoking
marijuana and there was evidence that he was smoking a marijuana cigarette just prior to the accident... (p. 92).

The description of the accident and its consequences were identical for the three accident reports. In all stories the driver was the only victim of the accident which was described as having serious consequences.

The next two pages of the experimental booklet contained the dependent measures. Subjects reported their judgments by circling a point in a 21 point bipolar scale, labelled at both poles. The first question assessed attribution of responsibility to the victim, Lennie B., for the accident.

The question read:

Do you feel that Lennie B. was responsible for the accident in which he was hurt and his parents' car and city property were damaged?

The poles were labelled "He was not at all responsible" and "He was totally responsible." The second question asked why the car spun out of control. Labelling was from "Driving Unsafely" at the low pole to "Wet Pavement" at the high pole. The third question asked whether the victim had control of his auto at the time of the accident. Labelling was "He had no control of his auto" and "He had full control of his auto." Question number four asked how foreseeable the accident had been. The low pole was labelled "Impossible to Foresee" and the high pole "Obviously Foreseeable." The fifth question asked what fine Lennie B., the victim of the accident, should be forced to pay from $0 to $400.

The second page of rating scales contained the checks on the effectiveness of the experimental manipulations. First, each subject rated the
possibility that he might be in circumstances similar to those described in the accident report. Rating was from "Never" to "Easily." The next question assessed how similar to themselves subjects thought Lennie B. was. Rating was from "He is totally different" to "He is much the same." Question eight asked subjects to rate the perceived severity of the accident from "Very Severe" to "Inconsequential." The ninth question asked subjects to rate how strict they had been in judging. Labelling was "Very Lenient" on the low pole and "Very Strict" on the high pole.

The next page explained the rationale for asking subjects about their marijuana use. They were told that they would be asked questions to measure characteristics of their own behavior which might have influenced their impression ratings. They were assured that their answers would be anonymous and exhorted to be careful and honest in answering the questions. The questionnaire consisted of seven questions assessing age, sex, frequency of use of tobacco, alcohol and marijuana during the school year, whether they intended to use marijuana in the future and whether they had a valid driver's license. The specific questions used to place subjects in one of the drug categories were:

How often have you used marijuana since September?

A. Never
B. Once or twice
C. 3-6 times
D. Seven or more times

How often will you smoke marijuana in the future?

A. Never
B. Maybe, if the setting is right
C. Occasionally (about once a month)
D. Whenever it is available, or regularly
Subjects who indicated answer A to both questions were classified in the group of MA. Subjects who answered A or B to the first question were called AMB. The subjects in both these groups comprised the NU. The RU were those subjects who indicated answer D to the first question and answer C or D to the second question.

Procedure

Subjects were run in groups mostly of four or five. After they were seated in the classroom used for the experiment they were given one of the experimental booklets, which had been randomly ordered, and asked to complete the booklet carefully and honestly. When all subjects in a group were finished, the experiment was fully explained to them. Their reactions were sought out and they were asked not to discuss the experiment with others. Most subjects found the experiment and its explanation quite interesting.²

Analysis

The orthogonal comparisons planned to best test the hypotheses are shown in Table 1. A1 indicates differences in the judgments made of the marijuana smoking report from those made of the other reports together. A2 tests whether there are differences between these two control reports, the basic report and the no permission report. III indicates differences in judgments between the RU and NU. And, D2 indicates whether the two groups of NU, the MA and the AMB, differ. The accident reports by drug groups interaction was examined by use of these orthogonal comparisons. The specific comparison A1 X III was hypothesized to be significant while the remainder of the interaction variance would be insignificant, i.e., residual mean squares would not yield a significant F ratio.
Table 1
Set of Orthogonal Weights of Analysis

<table>
<thead>
<tr>
<th>Accident Report</th>
<th>Basic</th>
<th>No Permission</th>
<th>Marijuana Smoking</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>+1</td>
<td>+1</td>
<td>-2</td>
</tr>
<tr>
<td>A2</td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>Drug Groups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMB</td>
<td></td>
<td>+1</td>
<td>-2</td>
</tr>
<tr>
<td>RU</td>
<td></td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>+1</td>
<td>+1</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>+1</td>
<td>-1</td>
<td></td>
</tr>
</tbody>
</table>
Chapter III

Results

Perceived Similarity and Severity

Analysis of the ratings of the perception of similarity to the victim and the severity of the accident indicate that the experimental manipulations were effective. Table 2 presents the mean similarity scores for the drug groups and accident reports. Table 3 contains the analysis of variance of these scores. The victim of the marijuana smoking report was not seen as more or less similar ($\bar{x} = 10.7$) than the victims of the control reports ($\bar{x} = 11.9$, $F = 1.60$, $df = 1,81$) although the perception of similarity did differ across accident reports ($F = 4.61$, $df = 2,81$, $p < .025$). Of interest but not of crucial importance is the significant drug group effect ($F = 9.69$, $df = 2,81$, $p < .01$). The RU ($\bar{x} = 13.7$) rated the victims as more similar to themselves than the NU ($\bar{x} = 10.4$, $F = 12.00$, $df = 1,81$, $p < .01$). Also, the AMB tended to judge victims to be more similar than the MA ($F = 8.00$, $df = 1,81$, $p < .01$). Of direct importance to the testing of the defensive attribution hypothesis is the perception of the victim of the marijuana smoking report by the RU as reflected in the accident report by drug groups interaction ($F = 6.49$, $df = 4,81$, $p < .01$). Nearly all of the interaction sum of squares is caused by the differences in perception of similarity to the victim of the marijuana-smoking report between the RU ($\bar{x} = 17.2$) and the NU ($\bar{x} = 7.4$) as compared to these differences on the other reports (both $\bar{x}s = 11.9$, $F = 20.90$, $df = 1,81$, $p < .001$). This comparison is represented in Figure 1. The marijuana smoking victim was seen as significantly more
Table 2
Mean Perceived Similarity Scores

<table>
<thead>
<tr>
<th>Accident Report</th>
<th>MA</th>
<th>AMB</th>
<th>RU</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>13.1</td>
<td>15.2</td>
<td>12.1</td>
<td>13.5</td>
</tr>
<tr>
<td>No Permission</td>
<td>7.3</td>
<td>12.0</td>
<td>11.7</td>
<td>10.3</td>
</tr>
<tr>
<td>Marijuana Smoking</td>
<td>5.9</td>
<td>8.9</td>
<td>17.2</td>
<td>10.7</td>
</tr>
<tr>
<td>Total</td>
<td>8.8</td>
<td>12.0</td>
<td>13.7</td>
<td></td>
</tr>
</tbody>
</table>

Note: Higher the score the greater the perceived similarity
Table 3

Analysis of Variance for Perceived Similarity

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Report</td>
<td>177.69</td>
<td>2</td>
<td>86.84</td>
<td>4.01</td>
<td><.025</td>
</tr>
<tr>
<td>Drug Group</td>
<td>373.49</td>
<td>2</td>
<td>186.74</td>
<td>9.69</td>
<td><.01</td>
</tr>
<tr>
<td>AR X DG</td>
<td>500.31</td>
<td>4</td>
<td>125.08</td>
<td>6.49</td>
<td><.01</td>
</tr>
<tr>
<td>AI X Ill</td>
<td>403.80</td>
<td>1</td>
<td>403.80</td>
<td>20.90</td>
<td><.001</td>
</tr>
<tr>
<td>Residual</td>
<td>96.50</td>
<td>3</td>
<td>32.17</td>
<td>1.7</td>
<td>ns</td>
</tr>
<tr>
<td>Within</td>
<td>1563.30</td>
<td>81</td>
<td>19.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Mean Similarity Rating for Comparison of Marijuana Smoking Report with Other Reports and Regular Users with Non-regular Users.
similar by the RU than the NU and this pattern was not evidenced in response to the victim of the other accident reports. Not only did the RU judge the marijuana smoking victim to be more similar than the other victims, but also the NU rated all victims similarly ($r = 1.7$, $df = 3,81$, ns). The high overall correlation between perceived similarity and the possibility of being in similar circumstances adds further evidence for the effectiveness of the similarity manipulation ($r = .69$, $df = 88$, $p < .001$). Analysis of the perceived severity of the accident scores is described in Table 4. Differential attribution of responsibility cannot be attributed to differential perceptions of the severity of the accidents by the drug groups. While the accident reports did differ in perceived severity ($F = 3.26$, $df = 2,81$, $p < .05$), this difference is not related to attributed responsibility overall ($r = .15$, $df = 88$, $p > .10$) and the accident report by drug use interaction is nonsignificant ($F = 1.11$, $df = 4,81$, ns). Differential perceived severity of the consequences of the accident reports by drug groups was not found.

Attribution of Responsibility

The mean attribution of responsibility across accident reports and drug groups is described in Figure 2. Inspection of this figure indicates that both groups of NU maintain stable attribution levels across accident reports and that MA tend to attribute greater responsibility than do AMB. RU attribute responsibility in a manner similar to the NU on the accident reports in which no mention is made of marijuana smoking but attribute far less responsibility to the marijuana smoking report condition. Table 5 contains the mean attribution scores for drug groups and accident reports.
Table 4
Analysis of Variance for Perceived Severity

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Report</td>
<td>124.96</td>
<td>2</td>
<td>64.48</td>
<td>3.26</td>
<td><.05</td>
</tr>
<tr>
<td>Drug Group</td>
<td>11.36</td>
<td>2</td>
<td>5.68</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>AR X DG</td>
<td>84.91</td>
<td>4</td>
<td>21.23</td>
<td>1.11</td>
<td>ns</td>
</tr>
<tr>
<td>Within</td>
<td>1552.58</td>
<td>81</td>
<td>19.17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Mean Attribution of Responsibility for Accident Reports and Drug Groups.
Table 5

Mean Attribution of Responsibility Scores

<table>
<thead>
<tr>
<th>Drug Group</th>
<th>MA</th>
<th>AMB</th>
<th>RU</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>13.0</td>
<td>11.2</td>
<td>10.7</td>
<td>11.6</td>
</tr>
<tr>
<td>No Permission</td>
<td>13.9</td>
<td>10.8</td>
<td>13.0</td>
<td>12.6</td>
</tr>
<tr>
<td>Marijuana Smoking</td>
<td>14.9</td>
<td>13.5</td>
<td>7.0</td>
<td>11.8</td>
</tr>
<tr>
<td>Total</td>
<td>13.9</td>
<td>11.8</td>
<td>10.2</td>
<td></td>
</tr>
</tbody>
</table>

Note: Higher score indicates higher assigned responsibility.
The analysis of variance of these scores is summarized in Table 6. Attribution of responsibility was not significantly different for accident reports \((F < 1)\). Drug groups differed in attributed responsibility \((F = 4.42, df = 2,81, p < .025)\). RU \((\bar{X} = 10.2)\) attributed less responsibility than NU \((\bar{X} = 12.9, F = 6.0, df = 1,81, p < .01)\) but differences in attributed responsibility between NU groups was not significant \((F = 2.38, df = 1,81, p < .10)\). The hypothesized interaction of accident reports by drug groups was of borderline significance \((F = 2.45, df = 4,81, p < .055)\). The specific orthogonal comparison of importance to the effect of similarity on attributed responsibility is highly significant and accounts for nearly all the interaction sum of squares \((F = 8.38, df = 1,81, p < .01, \text{ residual } F < 1)\). The mean attributed responsibility for this comparison is pictured in Figure 3 which clearly indicates that the only victim to receive lower responsibility scores is the victim who was perceived as most similar. RU \((\bar{X} = 7.0)\) attributed significantly lower responsibility to the victim of the marijuana smoking report than did the NU \((\bar{X} = 14.2)\) when this difference is compared to the levels of attribution of responsibility to the victims of the other accident reports \((\bar{X} = 11.8 \text{ and } \bar{X} = 12.2, \text{ respectively})\). Hypothesis I, which predicted lower attribution only to the similar victim, is thus strongly supported. A further indication of the effect of similarity on attributed responsibility comes from the negative correlation of perceived similarity to the victim and the possibility of being in similar circumstances with attributed responsibility \((\text{both } r_s = -.60, df = 88, p < .001)\).

Table 7 contains the overall intercorrelations of the dependent measures. Table 8 presents these correlations for the marijuana-smoking
Table 6

Analysis of Variance for Attribution of Responsibility

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Report</td>
<td>14.87</td>
<td>2</td>
<td>7.43</td>
<td><1</td>
<td>ns</td>
</tr>
<tr>
<td>Drug Group</td>
<td>206.60</td>
<td>2</td>
<td>103.30</td>
<td>4.42</td>
<td><.025</td>
</tr>
<tr>
<td>AR X DG</td>
<td>228.93</td>
<td>4</td>
<td>57.35</td>
<td>2.45</td>
<td><.055</td>
</tr>
<tr>
<td>AL X III</td>
<td>195.80</td>
<td>1</td>
<td>195.80</td>
<td>8.38</td>
<td><.001</td>
</tr>
<tr>
<td>Residual</td>
<td>33.13</td>
<td>3</td>
<td>11.04</td>
<td><1</td>
<td>ns</td>
</tr>
<tr>
<td>Within</td>
<td>1891.58</td>
<td>81</td>
<td>23.35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 3. Mean Attribution of Responsibility for Comparison of Marijuana Smoking Report with Other Reports and Regular Marijuana Users with Non-regular Users.
Table 7

Overall Intercorrelations of Dependent Measures

<table>
<thead>
<tr>
<th>Attributed Responsibility</th>
<th>Externally Caused</th>
<th>No Control</th>
<th>Foreseeability</th>
<th>Size of Fine</th>
<th>Be in Same Situation</th>
<th>Perceived Similarity</th>
<th>Severity</th>
<th>Strict Judges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attr. Resp.</td>
<td>-.61</td>
<td>-.20</td>
<td>.33</td>
<td>.46</td>
<td>-.61</td>
<td>-.60</td>
<td>-.15</td>
<td>.38</td>
</tr>
<tr>
<td>Ext. Caused</td>
<td>.16</td>
<td>-.29</td>
<td>-.19</td>
<td>.33</td>
<td>.41</td>
<td>.10</td>
<td>-.22</td>
<td></td>
</tr>
<tr>
<td>No Control</td>
<td>-.13</td>
<td>-.09</td>
<td>.16</td>
<td>.22</td>
<td>.39</td>
<td>-.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foresee.</td>
<td>.24</td>
<td>-.21</td>
<td>.35</td>
<td>-.16</td>
<td>.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td>-.37</td>
<td>-.43</td>
<td>-.15</td>
<td>.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same Situation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.69</td>
<td>.00</td>
<td>-.22</td>
</tr>
<tr>
<td>Similarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.00</td>
<td>-.27</td>
<td></td>
</tr>
<tr>
<td>Severity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-.08</td>
<td></td>
</tr>
<tr>
<td>Strict</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[df = 88 \]

\[p < .05 = .208 \]

\[p < .01 = .271 \]

\[p < .001 = .340 \]
Table 8

Intercorrelations of Dependent Measures of Marijuana Smoking Report

<table>
<thead>
<tr>
<th>Attributed Responsibility</th>
<th>Externally Caused</th>
<th>No Control of Auto</th>
<th>Foreseeability</th>
<th>Fine</th>
<th>Be in Same Situation</th>
<th>Perceived Similarity</th>
<th>Severity</th>
<th>Strict Judges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attr. Resp.</td>
<td>-.51</td>
<td>-.54</td>
<td>.62</td>
<td>.64</td>
<td>-.77</td>
<td>-.73</td>
<td>-.29</td>
<td>.51</td>
</tr>
<tr>
<td>Ext. Caused</td>
<td>.44</td>
<td>-.23</td>
<td>-.33</td>
<td>.26</td>
<td>.37</td>
<td>.50</td>
<td>-.50</td>
<td>.50</td>
</tr>
<tr>
<td>No Control</td>
<td>-.18</td>
<td>-.33</td>
<td>.49</td>
<td>.37</td>
<td>.44</td>
<td>-.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foresee.</td>
<td>.33</td>
<td>-.44</td>
<td>-.59</td>
<td>-.07</td>
<td>.41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fine</td>
<td>-.64</td>
<td>-.69</td>
<td>-.22</td>
<td>.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Same Situation</td>
<td>.74</td>
<td>.02</td>
<td>-.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similarity</td>
<td>.13</td>
<td>-.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severity</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strict</td>
<td>.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\text{df} = 28$

$p < .05 = .37$

$p < .01 = .44$

$p < .001 = .58$
report condition only. Hypothesis II stated that responsibility should be negatively correlated with external attributions of causality. The tendency for subjects to judge the cause of Lennie B.'s accident as due to wet pavement is significantly related to their attributes of responsibility. This measure correlates -.61 ($df = 88, p < .001$) overall and -.51 ($df = 28$, $p < .01$) in the marijuana smoking report condition. Hypothesis II also states that the assigned responsibility should be inversely related to the victim's control of the auto at the time of the accident. This relationship is not supported overall ($r = -.20, df = 88, p > .05$) but is supported within the marijuana smoking report condition ($r = -.54, df = 88, p < .01$). Hypothesis II is thus supported. Attributions of responsibility correlated highly with perceived locus of causality; high assigned responsibility accompanied internal attribution of causality for a serious automobile accident.

From Hypothesis III a positive relation between perceived severity of the accident and foreseeability of the accident was expected. However, this relationship was not found overall ($r = -.16, df = 88, p > .10$) or within the marijuana smoking report condition ($r = -.17, df = 28, p > .10$). While this hypothesis was not supported, the degree of relationship between severity of accidental consequences and foreseeability of the accident may have been attenuated since all of the accidents were serious and perceptions of severity were not as free to vary as in the Walster (1967) study.

Hypothesis IV predicted a positive correlation between attributed responsibility and foreseeability of the accident. These measures were significantly related overall ($r = .33, df = 88, p < .01$) and within the
marijuana smoking report condition \((r = .62, df = 88, p < .001) \). The support for both Hypotheses II and IV fit well; subjects judge a victim responsible for events which are internally controlled and foreseeable.

Hypothesis V anticipated that size of fine assigned to the victim of the accident should be directly related to the attribution of responsibility. Table 9 presents the analysis of variance for the size of fine for accident reports and drug groups. The pattern of the results is the same as that for assigned responsibility. Drug groups differed in their tendency to assign fines \((F = 11.59, df = 2,81, p < .001) \) and there was no difference in fines assigned by accident reports \((F = 2.72, df = 2,81, ns) \). While the accident reports x drug groups interaction was not significant \((F = 1.56, df = 4,81) \), the difference between the RU \((\bar{x} = 4.0) \) and NU \((\bar{x} = 11.2) \) on the marijuana smoking report compared to the other reports \((\bar{x} = 7.1 \text{ and } \bar{x} = 2.4, \text{ respectively}) \) accounted for nearly all the interaction variance and was significant \((F = 6.08, df = 1,81, p < .025, \text{ residual } F < 1) \). Also, the size of fine correlated with attributed responsibility overall \((r = .46, df = 88, p < .001) \) and within the marijuana smoking report condition \((r = .64, df = 28, p < .001) \). Further, perceived similarity was negatively correlated with size of fine both overall \((r = -.43, df = 88, p < .001) \) and within the marijuana smoking report condition \((r = -.59, df = 88, p < .001) \). Hypothesis V is thus strongly supported and the parallel in the effect of similarity on both attributed responsibility and size of fine lends further support to the defensive attribution hypothesis.

The final dependent measure has the subjects rate their leniency as judges. While the overall correlation between attributed responsibility and
Table 9
Analysis of Variance for Size of Fine

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Report</td>
<td>94.02</td>
<td>2</td>
<td>47.01</td>
<td>2.72</td>
<td>ns</td>
</tr>
<tr>
<td>Drug Group</td>
<td>400.42</td>
<td>2</td>
<td>200.21</td>
<td>11.59</td>
<td><.001</td>
</tr>
<tr>
<td>AR X DG</td>
<td>108.04</td>
<td>4</td>
<td>27.01</td>
<td>1.56</td>
<td>ns</td>
</tr>
<tr>
<td>Al X DIII</td>
<td>105.20</td>
<td>1</td>
<td>105.20</td>
<td>6.08</td>
<td><.025</td>
</tr>
<tr>
<td>Residual</td>
<td>2.80</td>
<td>3</td>
<td>.93</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>1398.78</td>
<td>81</td>
<td>17.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and strictness of judgment was significant ($r = .38$, $df = 88$, $p < .001$), the relationship was not as strong as that between attributed responsibility and the other dependent measures. Subjects were somewhat accurate in judging the strictness of their responsibility assignments.
Chapter IV
Discussion

Defensive attribution proposes that similarity to a victim of a serious accident should render attribution of responsibility to that victim less correspondent. A clear picture of the attribution process arises from the four hypotheses which found experimental support. Not only did marijuana smokers judge a marijuana smoking victim to be less responsible for an accident than did non-marijuana smoking subjects, but they also found the accident to be less foreseeable, externally caused and assigned lower fines. Strong support was found for defensive attribution motivated by perceived similarity to the victim of a serious accident.

In the two non-marijuana-smoking accident reports, where there was no differential similarity to the victim for the drug groups, there were no differences in attributed responsibility. Neither the absence of any identifying behavior (Basic Report) nor the presence of illicit behavior (No Permission Report) was enough to create similarity and thereby affect responsibility. Further, the correlations between attributed responsibility and similarity overall and within the accident report conditions lend additional support to the defensive attribution position of attributed responsibility. Only the victim who was perceived to be similar was assigned lower responsibility and fines. Also, size of fine and perceived similarity were negatively correlated. Where Walster (1966) finds greater responsibility assigned to a serious accident and Shaver (1970a, b) finds less responsibility for a severe accident, similarity may have influenced subjects
differently. Walster attempted to lower personal involvement and thereby influenced subjects to see the victim as different, allowing for attribution of responsibility. In the Shaver studies, some subjects may have seen the victim as similar in the serious accident condition and thereby attributed less responsibility. The operation of similarity to the victim would be further clarified if both similarity and seriousness of the accidental consequences were varied. Defensive attribution should be activated by a serious accident but not a mild one.

Some qualification of the hypotheses advances are suggested by the analysis of the results. First, the AMB, who rated an intermediate similarity to the victim of the marijuana-smoking-accident report did not perceive this victim to be significantly more similar than did MAs, nor did they attribute less responsibility, although the means in each case fell in intermediate positions. The failure of the AMB to differ from MA may be caused by the fact that they were not sufficiently identified with marijuana smoking to arouse defensive attribution. The differences found between drug users and non-drug users cannot be attributed simply to a tendency for the RU generally to attribute less responsibility for an accident. Comparison between drug users and non-drug users on the two-marijuana smoking accident reports were insignificant.

Secondly, this study treats a situation which has non-desirable effects, as do most studies on attribution of responsibility. How attributions of responsibility would differ in response to happy events as a function of similarity to the victim is not clear. Recent studies of positive outcomes (Shaw & Skolnick, 1971; Feather & Simon, 1971) have not examined this
Drawing from a study by Winer and Kukla (1970) it might be hypothesized that similar people will be seen as responsible for positive outcomes while different persons would be perceived as lucky. This should be especially true of "extremely happy" accidents.

Walster (1967) found that the foreseeability of an accident was related to the severity of its outcomes; however, the present study did not support her findings. The overall correlation between foreseeability and attribution of responsibility fits well with the defensive attribution model and suggestions advanced by Lerner (1965). Subjects who assign low responsibility may attribute the accident to chance and thereby render it unforeseeable or they may relate both measures in an attempt to understand their world as "just." With serious negative outcomes, similar subjects may be the victims of an unyielding fate while different victims get what they deserve. Schwartz (1970) argued that denial of responsibility and denial of severity of consequences are independent responses to the same situation. However, the lack of effect for the drug use by accident report interaction on perceived severity of consequences seems to make the denial of consequences a non-preferred manner of handling what was a threatening situation. Subjects did not deny consequences but rather denied responsibility.

The strong support found for defensive attribution theory has implications for the rational model of the attribution process advanced by Jones and Davis (1965). For their theory of correspondent inferences the standard for attributing qualities to another is not the qualities possessed by the judge himself, but rather the qualities possessed by the
average person. Jones (et al., 1971) conclude that there is no apparent tendency for Ss to make attributions in line with, or in opposition to, their own attributes. The importance of similarity as a factor in person perception has, however, been a variable of continued interest in social psychology (Schrauger & Altrocchi, 1964). Similarity to another, at least in some circumstances, seriously biases judgments. Indeed, Jones and Harris (1967) found a significant correlation between attitudes assigned to a speaker and personal attitudes when the speaker had no choice in the statement he delivered. The present study presents strong evidence for the effect the observer's opinion has on the attribute-effect linkage. Judges do indeed tend to make egocentric assumptions when judging the behavior of others, at least in "accidental" situations. Defensive attribution adds an irrational twist to the attribution model. Subjects appear to sacrifice some rationality when confronted with a similar victim involved in a serious accident.
References

Shaver, K. G. Redress and conscientiousness in the attribution of responsibility for accidents. *Journal of Experimental Social Psychology*, 1970, 6, 100-110. (a)

Footnotes

1 Data was collected during the late spring and early summer of 1971.

2 One subject expressed interest in the percentage of students reporting personal use of marijuana. The results of the drug questionnaire were therefore published in the student newspaper.
Appendix I

Basic Accident Report

This information is based on the police report of an accident involving physical and property damage done by an automobile driven by the defendant, Lennie B.

...Lennie B. was operating his vehicle, a 1967 Chevrolet which is registered to his parents, north on the Kennedy Expressway. He was returning from a party alone in the late evening on a drizzly night...(p. 92).

...As he was driving on a curve in the vicinity of Foster Ave., his car suddenly spun out of control on the wet pavement and slid broadside into a lightpole with considerable force. The collision seemed to have knocked him unconscious...(p. 93).

...Lennie B. was taken to the hospital in an ambulance where he was treated for a slight concussion and a broken leg. The car was seriously damaged and the lightpole was toppled. The damage to the car was estimated at $700 and the damage to the city property was estimated at $200 (p. 93).
Appendix II

No Permission Report

This information is based on the police report of an accident involving physical and property damage done by an automobile driven by the defendant, Lennie B.

...Lennie B. was operating his vehicle, a 1967 Chevrolet which is registered to his parents and which he supposedly had taken contrary to their wishes, north on the Kennedy Expressway. He was returning from a party alone in the late evening on a drizzly night... (p. 92).

...As he was driving on a curve in the vicinity of Foster Ave., his car suddenly spun out of control on the wet pavement and slid broadside into a lightpole with considerable force. The collision seemed to have knocked him unconscious... (p. 93).

...Lennie B. was taken to the hospital in an ambulance where he was treated for a slight concussion and a broken leg. The car was seriously damaged and the lightpole was toppled. The damage to the car was estimated at $700 and the damage to city property was estimated at $200 (p. 93).
Appendix III

Marijuana Smoking Report

This information is based on the police report of an accident involving physical and property damage done by an automobile driven by the defendant, Lennie B.

...Lennie B. was operating his vehicle, a 1967 Chevrolet which is registered to his parents, north on the Kennedy Expressway. He was alone in the late evening of a drizzly night. It seems Lennie B. was returning from a party where he had been smoking marijuana and there was evidence that he was smoking a marijuana cigarette just prior to the accident... (p. 92).

...As he was driving on a curve in the vicinity of Foster Ave., his car suddenly spun out of control on the wet pavement and slid broadside into a lightpole with considerable force. The collision seemed to have knocked him unconscious... (p. 93).

...Lennie B. was taken to the hospital in an ambulance where he was treated for a slight concussion and a broken leg. The car was seriously damaged and the lightpole was toppled. The damage to the car was estimated at $700 and the damage to city property was estimated at $200 (p. 93).
Appendix IV

Dependent Ranking Scale

Please circle the number on the scale which best represents your judgment on the information you have just been given.

1. Do you feel that Lennie B. was responsible for the accident in which he was hurt and his parents' car and city property were damaged?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| He was not at all responsible | He was totally responsible |

2. Why do you think Lennie B.'s car spun out of control?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| Driving Unsafely | Wet Pavement |

3. Do you think Lennie B. was in control of his automobile at the time of the accident?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| He had no control of his auto | He had full control of his auto |

4. How foreseeable was Lennie B.'s accident?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| Impossible to Foresee | Obviously Foreseeable |

5. What amount of a fine should Lennie B. be forced to pay?

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| $0 | $400 |
6. How possible do you think it is that you might be in circumstances similar to those of Lennie B.?

1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21

Never Easily

7. How similar do you think Lennie B. is to you?

1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21

He is totally different He is much the same

8. How severe did you consider Lennie B.'s accident to be?

1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21

Very Severe Inconsequential

9. How strict or lenient have you been in judging Lennie B.?

1--2--3--4--5--6--7--8--9--10--11--12--13--14--15--16--17--18--19--20--21

Very Lenient Very Strict
Appendix V

Drug Questionnaire

Please circle one letter for each question.

1. How old are you?
 A. 17
 B. 18
 C. 19
 D. 20
 E. Over 20

2. Are you
 A. Male
 B. Female

3. How often do you smoke tobacco?
 A. Never
 B. About 3-4 cigarettes a week
 C. About 1-5 cigarettes a day
 D. About 2-3 packs of cigarettes a week
 E. A pack of cigarettes a day or more

4. How often do you drink alcohol?
 A. Never
 B. About once a month
 C. About once a week
 D. Almost every day

5. How often have you smoked marijuana since September?
 A. Never
 B. Once or twice
 C. 3-6 times
 D. More than seven times

6. How often will you smoke marijuana in the future?
 A. Never
 B. Maybe if the setting is right
 C. Occasionally (about once a month)
 D. Whenever it is available, or regularly
7. Are you a licensed automobile driver?

 A. Yes
 B. No
APPROVAL SHEET

The Thesis submitted by John A. McKillip, Jr. has been read and approved by members of the Department of Psychology.

The final copies have been examined by the director of the Thesis and the signature which appears below verifies the fact that any necessary changes have been incorporated and that the Thesis is now given final approval with reference to content and form.

The Thesis is therefore accepted in partial fulfillment of the requirements for the degree of Master of Arts.

1-5-73
Date

[Signature of Advisor]