Date of Award

2016

Degree Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Chemistry

Abstract

A central question in the field of heterogeneous catalysis is how surface structure and subsurface species influence catalytic behavior. One key to answering that question is determining which surface structures and subsurface species are present under catalytically relevant conditions. This dissertation presents results of Auger electron spectroscopy, low energy electron diffraction, temperature programmed desorption, and scanning tunneling microscopy experiments on oxidized Rh(111) and Ag(111) crystals. Exposing Rh(111) to O2 produced a predominately (2 × 1) adlayer, but even after extended dosing, (2 × 2) domains were also present. Exposing Rh(111) to atomic oxygen yielded O coverages greater than 0.5 ML and (1 × 1) domains were observed to form along terrace step edges. However, (2 × 1) and (2 × 2) domains were still present.

Atomic oxygen was used to oxidize Ag(111) in order to study the effect of sample temperature as well as oxygen flux and energy. When atomic oxygen was generated using a lower temperature thermal cracker, a variety of previously reported surface structures were observed. When O was generated using a higher filament temperature, the surface became highly corrugated, layers of Ag2O appeared to form, and little subsurface oxygen was observed. To investigate the role of sample temperature, the Ag(111) sample was held at various temperatures while being exposed to atomic oxygen. For short doses, sample temperature had minimal effect on surface reconstruction. For longer doses, changes in sample temperature in the range of 490 K to 525 K had a substantial impact on surface reconstruction and subsurface oxygen absorption. Higher temperature dosing yielded the same surface structures which were observed after short doses. Lower temperature dosing with atomic oxygen resulted in subsurface oxygen formation and new structures which covered the surface. The results indicate the rich complexity of oxygen/transition metal interactions and illustrate how reactive species can be used to produce high coverage surface structures under UHV conditions.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Share

COinS