Date of Award
2016
Degree Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Physiology
Abstract
The goal of my dissertation was to compare and contrast the function of all three major isoforms of Myosin Binding Protein-C (MyBP-C): slow-skeletal, fast-skeletal, and cardiac (ssMyBP-C, fsMyBP-C, and cMyBP-C, respectively), with a focus on the least characterized isoform, fsMyBP-C. Using a variety of ex vivo, in vitro, and in silico methods, my research demonstrated that the N-terminal region of all MyBP-C isoforms bind to actin and shift tropomyosin, thus activating the thin filament during contraction. Furthermore, each isoform differentially activated the thin filament over isoform-specific ranges of Ca2+: slow-skeletal activates at low Ca2+, fast-skeletal activates at higher Ca2+, and cardiac activates over the full spectrum of Ca2+. I propose that different expression of MyBP-C isoforms allow striated muscles to fine tune its function. For example, the cardiac muscle sees the full range of Ca2+ on a beat-to-beat basis, and therefore cMyBP-C needs to operate over the full spectrum of Ca2+ with much higher frequency. Conversely, various skeletal muscles have vastly different roles: the demands of postural muscles are different than that of phasic muscles; thus, varied expression of slow-skeletal and fast-skeletal MyBP-C can ideally regulate the function of different muscles.
Recommended Citation
Lin, Brian Leei, "Heart and Sole: The Functional Role of Fast-Skeletal Myosin Binding Protein-C in Cardiac and Skeletal Muscle" (2016). Dissertations. 1952.
https://ecommons.luc.edu/luc_diss/1952
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright Statement
Copyright © 2016 Brian Leei Lin