Microplastic Deposition Velocity in Streams Follows Patterns for Naturally Occurring Allochthonous Particles
Document Type
Article
Publication Date
3-6-2019
Publication Title
Scientific Reports
Volume
9
Publisher Name
Springer Nature
Abstract
Accumulation of plastic litter is accelerating worldwide. Rivers are a source of microplastic (i.e., particles <5 >mm) to oceans, but few measurements of microplastic retention in rivers exist. We adapted spiraling metrics used to measure particulate organic matter transport to quantify microplastic deposition using an outdoor experimental stream. We conducted replicated pulse releases of three common microplastics: polypropylene pellets, polystyrene fragments, and acrylic fibers, repeating measurements using particles with and without biofilms. Depositional velocity (vdep; mm/s) patterns followed expectations based on density and biofilm ‘stickiness’, where vdep was highest for fragments, intermediate for fibers, and lowest for pellets, with biofilm colonization generally increasing vdep. Comparing microplastic vdep to values for natural particles (e.g., fine and coarse particulate organic matter) showed that particle diameter was positively related to vdep and negatively related to the ratio of vdep to settling velocity (i.e., sinking rate in standing water). Thus, microplastic vdep in rivers can be quantified with the same methods and follows the same patterns as natural particles. These data are the first measurements of microplastic deposition in rivers, and directly inform models of microplastic transport at the landscape scale, making a key contribution to research on the global ecology of plastic waste.
Recommended Citation
Hoellein, Timothy; Shogren, Arial J.; Tank, Jennifer L.; Risteca, Paul; and Kelly, John. Microplastic Deposition Velocity in Streams Follows Patterns for Naturally Occurring Allochthonous Particles. Scientific Reports, 9, : , 2019. Retrieved from Loyola eCommons, Biology: Faculty Publications and Other Works, http://dx.doi.org/10.1038/s41598-019-40126-3
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Statement
© The Authors, 2019.
Comments
Author Posting © The Authors, 2019. This article is posted here by permission of The Authors for personal use, not for redistribution. The article was published in Scientific Reports, Volume 9, Article Number 3740, March 2019, https://doi.org/10.1038/s41598-019-40126-3