Document Type

Article

Publication Date

12-1-2021

Publication Title

Microbiology Spectrum

Volume

9

Issue

3

Pages

1-12

Publisher Name

American Society for Microbiology

Abstract

The urinary tract has a microbial community (the urinary microbiota or urobiota) that has been associated with human health. Whole genome sequencing of bacteria is a powerful tool, allowing investigation of the genomic content of the urobiota, also called the urinary microbiome (urobiome). Bacterial plasmids are a significant component of the urobiome yet are understudied. Because plasmids can be vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. In this project, we sought plasmids in 11 clinically relevant urinary species: Aerococcus urinae, Corynebacterium amycolatum, Enterococcus faecalis, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Lactobacillus gasseri, Lactobacillus jensenii, Staphylococcus epidermidis, Streptococcus anginosus, and Streptococcus mitis. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in other species sequenced thus far. Some identified plasmidic assemblies were predicted to have putative virulence and/or antibiotic resistance genes, although the majority of their annotated coding regions were of unknown predicted function. In this study, we report on plasmids from urinary species as a first step to understanding the role of plasmids in the bacterial urobiota. IMPORTANCE The microbial community of the urinary tract (urobiota) has been associated with human health. Whole genome sequencing of bacteria permits examination of urobiota genomes, including plasmids. Because plasmids are vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. Currently, urobiota plasmids are understudied. Here, we sought plasmids in 11 clinically relevant urinary species. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in the other 6 species. We identified putative virulence and/or antibiotic resistance genes in some of the plasmidic assemblies, but most of their annotated coding regions were of unknown function. This is a first step to understanding the role of plasmids in the bacterial urobiota.

Identifier

85122809006 (Scopus)

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS