Document Type
Article
Publication Date
6-26-2020
Publication Title
Journal of Biological Chemistry
Volume
295
Issue
26
Pages
8668-8677
Publisher Name
Elsevier
Abstract
Cleavage of aromatic carbon–chlorine bonds is critical for the degradation of toxic industrial compounds. Here, we solved the X-ray crystal structure of chlorothalonil dehalogenase (Chd) from Pseudomonas sp. CTN-3, with 15 of its N-terminal residues truncated (ChdT), using single-wavelength anomalous dispersion refined to 1.96 Å resolution. Chd has low sequence identity (<15%) compared with all other proteins whose structures are currently available, and to the best of our knowledge, we present the first structure of a Zn(II)-dependent aromatic dehalogenase that does not require a coenzyme. ChdT forms a “head-to-tail” homodimer, formed between two α-helices from each monomer, with three Zn(II)-binding sites, two of which occupy the active sites, whereas the third anchors a structural site at the homodimer interface. The catalytic Zn(II) ions are solvent-accessible via a large hydrophobic (8.5 × 17.8 Å) opening to bulk solvent and two hydrophilic branched channels. Each active-site Zn(II) ion resides in a distorted trigonal bipyramid geometry with His117, His257, Asp116, Asn216, and a water/hydroxide as ligands. A conserved His residue, His114, is hydrogen-bonded to the Zn(II)-bound water/hydroxide and likely functions as the general acid-base. We examined substrate binding by docking chlorothalonil (2,4,5,6-tetrachloroisophtalonitrile, TPN) into the hydrophobic channel and observed that the most energetically favorable pose includes a TPN orientation that coordinates to the active-site Zn(II) ions via a CN and that maximizes a π–π interaction with Trp227. On the basis of these results, along with previously reported kinetics data, we propose a refined catalytic mechanism for Chd-mediated TPN dehalogenation.
Recommended Citation
Catlin, Daniel S.; Yang, Xinhang; Bennett, Brian; Holz, Richard C.; and Liu, Dali. Structural basis for the hydrolytic dehalogenation of the fungicide chlorothalonil. Journal of Biological Chemistry, 295, 26: 8668-8677, 2020. Retrieved from Loyola eCommons, Chemistry: Faculty Publications and Other Works, http://dx.doi.org/10.1074/jbc.RA120.013150
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Copyright Statement
© Catlin et al., 2020.
Comments
Author Posting © Catlin et al., 2020. This article is posted here by permission of Catlin et al. for personal use, not for redistribution. The article was published in Journal of Biological Chemistry, Volume 295, Issue 26, June 2020, https://doi.org/10.1074/jbc.RA120.013150