Bounds on the Number of Longest Common Subsequences.

Document Type

Technical Report

Publication Date


Publication Title

Computer Science Research Repository


This paper performs the analysis necessary to bound the running time of known, efficient algorithms for generating all longest common subsequences. That is, we bound the running time as a function of input size for algorithms with time essentially proportional to the output size. This paper considers both the case of computing all distinct LCSs and the case of computing all LCS embeddings. Also included is an analysis of how much better the efficient algorithms are than the standard method of generating LCS embeddings. A full analysis is carried out with running times measured as a function of the total number of input characters, and much of the analysis is also provided for cases in which the two input sequences are of the same specified length or of two independently specified lengths.




© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Greenberg2003Btechr_slides.pdf (1256 kB)
Presentation slides from SIAM Conference on Discrete Mathematics, Nashville, TN, June 13, 2004.