Document Type
Article
Publication Date
Summer 6-15-2018
Publication Title
Scientific Reports
Volume
8
Issue
9217(2018)
Publisher Name
Springer Nature
Abstract
The peripheral sensory system is critical to regulating motor plasticity and motor recovery. Peripheral electrical stimulation (ES) can generate constant and adequate sensory input to influence the excitability of the motor cortex. The aim of this proof of concept study was to assess whether ES prior to each hand function training session for eight weeks can better improve neuromuscular control and hand function in chronic stroke individuals and change electroencephalography-electromyography (EEG-EMG) coherence, as compared to the control (sham ES). We recruited twelve subjects and randomly assigned them into ES and control groups. Both groups received 20-minute hand function training twice a week, and the ES group received 40-minute ES on the median nerve of the affected side before each training session. The control group received sham ES. EEG, EMG and Fugl-Meyer Assessment (FMA) were collected at four different time points. The corticomuscular coherence (CMC) in the ES group at fourth weeks was significantly higher (p = 0.004) as compared to the control group. The notable increment of FMA at eight weeks and follow-up was found only in the ES group. The eight-week rehabilitation program that implemented peripheral ES sessions prior to function training has a potential to improve neuromuscular control and hand function in chronic stroke individuals.
Identifier
PMID: 29907780
Recommended Citation
Pan, Li-Ling Hope; Yang, Wen-Wen; Kao, Chung-Lan; Tsai, Mei-Wun; Wei, Shun-Hwa; Fregni, Felipe; Chen, Vincent Chiun-Fan; and Chou, Li-Wei, "Effects of 8-Week Sensory Electrical Stimulation Combined with Motor Training on EEG-EMG Coherence and Motor Function in Individuals with Stroke" (2018). Engineering Science Faculty Publications. 3.
https://ecommons.luc.edu/engineering_facpubs/3
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Statement
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Comments
Author Posting. © The authors, 2018.This article is licensed under a Creative Commons Attribution 4.0 International License. The definitive version was published in Scientific Reports, 8, 1, 2018, https://doi.org/10.1038/s41598-018-27553-4.