Document Type
Article
Publication Date
5-30-2024
Publication Title
IEEE Transactions on Information Forensics and Security
Volume
19
Pages
5985-5998
Publisher Name
IEEE
Abstract
In this paper, we present a novel Single-class target-specific Adversarial attack called SingleADV. The goal of SingleADV is to generate a universal perturbation that deceives the target model into confusing a specific category of objects with a target category while ensuring highly relevant and accurate interpretations. The universal perturbation is stochastically and iteratively optimized by minimizing the adversarial loss that is designed to consider both the classifier and interpreter costs in targeted and non-targeted categories. In this optimization framework, ruled by the first- and second-moment estimations, the desired loss surface promotes high confidence and interpretation score of adversarial samples. By avoiding unintended misclassification of samples from other categories, SingleADV enables more effective targeted attacks on interpretable deep learning systems in both white-box and black-box scenarios. To evaluate the effectiveness of SingleADV, we conduct experiments using four different model architectures (ResNet-50, VGG-16, DenseNet-169, and Inception-V3) coupled with three interpretation models (CAM, Grad, and MASK). Through extensive empirical evaluation, we demonstrate that SingleADV effectively deceives the target deep learning models and their associated interpreters under various conditions and settings. Our experimental results show that the performance of SingleADV is effective, with an average fooling ratio of 0.74 and an adversarial confidence level of 0.78 in generating deceptive adversarial samples. Furthermore, we discuss several countermeasures against SingleADV, including a transfer-based learning approach and existing preprocessing defenses.
Recommended Citation
Abdukhamidov, E., Abuhamad, M., Thiruvathukal, G.K., Kim, H., & Abuhmed, T. (2023). "SingleADV: Single-Class Target-Specific Attack against Interpretable Deep Learning Systems". IEEE Transactions on Information Forensics and Security, 10.1109/TIFS.2024.3407652
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Copyright Statement
© The Authors, 2024
Comments
Author Posting © The Authors, 2024. This article is posted here by permission of IEEE for personal use. This article was published open access in IEEE Transactions on Information Forensics and Security, VOL.19, (May, 2024), http://dx.doi.org/10.1109/TIFS.2024.3407652