Document Type
Article
Publication Date
5-1-2023
Publication Title
Astrophysical Journal Letters
Volume
949
Issue
1
Abstract
Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 × 1048 erg for stripped-envelope supernovae, 2.8 × 1048 erg for type IIP, and 1.3 × 1049 erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 103-105] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of −2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions.
Identifier
85160286860 (Scopus)
Recommended Citation
Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S. K.; Aguilar, J. A.; Ahlers, M.; Alameddine, J. M.; Amin, N. M.; Andeen, K.; Anton, G.; Argüelles, C.; Ashida, Y.; Athanasiadou, S.; Axani, S. N.; Bai, X.; A. Balagopal, V.; Baricevic, M.; Barwick, S. W.; Basu, V.; Bay, R.; Beatty, J. J.; Becker, K. H.; Tjus, J. Becker; Beise, J.; and Bellenghi, C., "Constraining High-energy Neutrino Emission from Supernovae with IceCube" (2023). Physics: Faculty Publications and Other Works. 70.
https://ecommons.luc.edu/physics_facpubs/70