Document Type
Article
Publication Date
10-1-2022
Publication Title
Astrophysical Journal Letters
Volume
938
Issue
2
Abstract
Galaxy clusters have the potential to accelerate cosmic rays (CRs) to ultrahigh energies via accretion shocks or embedded CR acceleration sites. The CRs with energies below the Hillas condition will be confined within the cluster and eventually interact with the intracluster medium gas to produce secondary neutrinos and gamma rays. Using 9.5 yr of muon neutrino track events from the IceCube Neutrino Observatory, we report the results of a stacking analysis of 1094 galaxy clusters with masses ≳1014 Me and redshifts between 0.01 and ∼1 detected by the Planck mission via the Sunyaev–Zel’dovich effect. We find no evidence for significant neutrino emission and report upper limits on the cumulative unresolved neutrino flux from massive galaxy clusters after accounting for the completeness of the catalog up to a redshift of 2, assuming three different weighting scenarios for the stacking and three different power-law spectra. Weighting the sources according to mass and distance, we set upper limits at a 90% confidence level that constrain the flux of neutrinos from massive galaxy clusters (≳1014 Me) to be no more than 4.6% of the diffuse IceCube observations at 100 TeV, assuming an unbroken E−2.5 power-law spectrum.
Identifier
85141320308 (Scopus)
Recommended Citation
Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Alameddine, J. M.; Alves, A. A.; Amin, N. M.; Andeen, K.; Anderson, T.; Anton, G.; Argüelles, C.; Ashida, Y.; Athanasiadou, S.; Axani, S.; Bai, X.; Balagopal, A. V.; Baricevic, M.; Barwick, S. W.; Basu, V.; Bay, R.; Beatty, J. J.; Becker, K. H.; and Becker Tjus, J., "Searching for High-energy Neutrino Emission from Galaxy Clusters with IceCube" (2022). Physics: Faculty Publications and Other Works. 78.
https://ecommons.luc.edu/physics_facpubs/78