Document Type
Article
Publication Date
11-10-2010
Publication Title
Physical Review Letters
Volume
105
Issue
210402
Abstract
In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We show that all conventional additive shape-invariant superpotentials that are independent of ħ can be generated from two partial differential equations. One of these is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve these equations, generate the set of all conventional shape-invariant superpotentials, and show that there are no others in this category. We then develop an algorithm for generating all additive shape-invariant superpotentials including those that depend on ħ explicitly.
Identifier
10.1103/PhysRevLett.105.210402
Recommended Citation
Bougie, Jonathan, Asim Gangopadhyaya, and Jeffry V. Mallow. “Generation of a Complete Set of Additive Shape-Invariant Potentials from an Euler Equation.” Physical Review Letters 105, no. 21 (November 19, 2010): 210402. doi:10.1103/PhysRevLett.105.210402.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright Statement
© 2010 The American Physical Society
Comments
Author Posting. © 2010 The American Physical Society. This article is posted here by permission of the American Physical Society for personal use, not for redistribution. The article published in Physical Review Letters, 105, 210402, 2010. http://dx.doi.org/10.1103/PhysRevLett.105.210402.