Document Type

Article

Publication Date

2011

Publication Title

Journal of Physics A: Mathematical and Theoretical

Volume

45

Abstract

We study the quantum Hamilton-Jacobi (QHJ) equation of the recently obtained exactly solvable models, related to the newly discovered exceptional polynomials and show that the QHJ formalism reproduces the exact eigenvalues and the eigenfunctions. The fact that the eigenfunctions have zeros and poles in complex locations leads to an unconventional singularity structure of the quantum momentum function p(x), the logarithmic derivative of the wave function, which forms the crux of the QHJ approach to quantization. A comparison of the singularity structure for these systems with the known exactly solvable and quasi-exactly solvable models reveals interesting differences. We find that the singularities of the momentum function for these new potentials lie between the above two distinct models, sharing similarities with both of them. This prompted us to examine the exactness of the supersymmetric WKB (SWKB) quantization condition. The interesting singularity structure of p(x) and of the superpotential for these models has important consequences for the SWKB rule and in our proof of its exactness for these quantal systems.

Comments

Author Posting. © IOP Publishing, 2011. This is the author's version of the work. It is posted here by permission of IOP Publishing for personal use, not for redistribution.The definitive version was published in Journal of Physics A: Mathematical and Theoretical, Volume 45, 2012. http://dx.doi.org/10.1088/1751-8113/45/5/055210

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.

Included in

Physics Commons

Share

COinS